Sage Rowan F, Way Danielle A, Kubien David S
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2.
J Exp Bot. 2008;59(7):1581-95. doi: 10.1093/jxb/ern053. Epub 2008 Apr 23.
Global warming and the rise in atmospheric CO(2) will increase the operating temperature of leaves in coming decades, often well above the thermal optimum for photosynthesis. Presently, there is controversy over the limiting processes controlling photosynthesis at elevated temperature. Leading models propose that the reduction in photosynthesis at elevated temperature is a function of either declining capacity of electron transport to regenerate RuBP, or reductions in the capacity of Rubisco activase to maintain Rubisco in an active configuration. Identifying which of these processes is the principal limitation at elevated temperature is complicated because each may be regulated in response to a limitation in the other. Biochemical and gas exchange assessments can disentangle these photosynthetic limitations; however, comprehensive assessments are often difficult and, for many species, virtually impossible. It is proposed that measurement of the initial slope of the CO(2) response of photosynthesis (the A/C(i) response) can be a useful means to screen for Rubisco activase limitations. This is because a reduction in the Rubisco activation state should be most apparent at low CO(2) when Rubisco capacity is generally limiting. In sweet potato, spinach, and tobacco, the initial slope of the A/C(i) response shows no evidence of activase limitations at high temperature, as the slope can be accurately modelled using the kinetic parameters of fully activated Rubisco. In black spruce (Picea mariana), a reduction in the initial slope above 30 degrees C cannot be explained by the known kinetics of fully activated Rubisco, indicating that activase may be limiting at high temperatures. Because black spruce is the dominant species in the boreal forest of North America, Rubisco activase may be an unusually important factor determining the response of the boreal biome to climate change.
在未来几十年,全球变暖和大气中二氧化碳浓度的上升将提高叶片的工作温度,常常远高于光合作用的最适温度。目前,对于高温下控制光合作用的限制过程存在争议。主流模型认为,高温下光合作用的降低是电子传递以再生核酮糖-1,5-二磷酸(RuBP)能力下降,或者是 Rubisco 活化酶维持 Rubisco 处于活性构象的能力降低的函数。确定这些过程中哪一个是高温下的主要限制因素很复杂,因为每一个过程可能会因另一个过程的限制而受到调节。生化和气体交换评估可以区分这些光合限制;然而,全面评估往往很困难,而且对于许多物种来说几乎是不可能的。有人提出,测量光合作用对二氧化碳响应的初始斜率(A/C(i)响应)可以作为筛选 Rubisco 活化酶限制的有用方法。这是因为当 Rubisco 能力通常受到限制时,在低二氧化碳浓度下 Rubisco 活化状态的降低应该最为明显。在甘薯、菠菜和烟草中,A/C(i)响应的初始斜率在高温下没有显示出活化酶限制的迹象,因为该斜率可以使用完全活化的 Rubisco 的动力学参数进行准确建模。在黑云杉(Picea mariana)中,30℃以上初始斜率的降低不能用完全活化的 Rubisco 的已知动力学来解释,这表明活化酶在高温下可能是限制因素。由于黑云杉是北美北方森林中的优势物种,Rubisco 活化酶可能是决定北方生物群落对气候变化响应的一个异常重要的因素。