Suppr超能文献

蛋白质有序与无序之间的过渡区域。

The twilight zone between protein order and disorder.

作者信息

Szilágyi A, Györffy D, Závodszky P

机构信息

Institute of Enzymology, BRC, Hungarian Academy of Sciences Karolina út 29, H-1113 Budapest, Hungary.

出版信息

Biophys J. 2008 Aug;95(4):1612-26. doi: 10.1529/biophysj.108.131151. Epub 2008 Apr 25.

Abstract

The amino acid composition of intrinsically disordered proteins and protein segments characteristically differs from that of ordered proteins. This observation forms the basis of several disorder prediction methods. These, however, usually perform worse for smaller proteins (or segments) than for larger ones. We show that the regions of amino acid composition space corresponding to ordered and disordered proteins overlap with each other, and the extent of the overlap (the "twilight zone") is larger for short than for long chains. To explain this finding, we used two-dimensional lattice model proteins containing hydrophobic, polar, and charged monomers and revealed the relation among chain length, amino acid composition, and disorder. Because the number of chain configurations exponentially grows with chain length, a larger fraction of longer chains can reach a low-energy, ordered state than do shorter chains. The amount of information carried by the amino acid composition about whether a protein or segment is (dis)ordered grows with increasing chain length. Smaller proteins rely more on specific interactions for stability, which limits the possible accuracy of disorder prediction methods. For proteins in the "twilight zone", size can determine order, as illustrated by the example of two-state homodimers.

摘要

内在无序蛋白质和蛋白质片段的氨基酸组成在特征上不同于有序蛋白质。这一观察结果构成了几种无序预测方法的基础。然而,这些方法通常对较小的蛋白质(或片段)的预测效果比对较大的蛋白质更差。我们表明,与有序和无序蛋白质相对应的氨基酸组成空间区域相互重叠,并且短链的重叠程度(“模糊区域”)比长链更大。为了解释这一发现,我们使用了包含疏水、极性和带电单体的二维晶格模型蛋白质,并揭示了链长、氨基酸组成和无序之间的关系。由于链构象的数量随链长呈指数增长,与较短链相比,较长链中更大比例的链能够达到低能量的有序状态。氨基酸组成所携带的关于蛋白质或片段是否无序的信息量随着链长的增加而增加。较小的蛋白质更多地依赖特定相互作用来维持稳定性,这限制了无序预测方法的可能准确性。对于处于“模糊区域”的蛋白质,大小可以决定有序性,这在两态同型二聚体的例子中得到了说明。

相似文献

1
The twilight zone between protein order and disorder.
Biophys J. 2008 Aug;95(4):1612-26. doi: 10.1529/biophysj.108.131151. Epub 2008 Apr 25.
2
Exact sequence analysis for three-dimensional hydrophobic-polar lattice proteins.
J Chem Phys. 2005 Mar 15;122(11):114705. doi: 10.1063/1.1814941.
3
Unique optimal foldings of proteins on a triangular lattice.
Appl Bioinformatics. 2005;4(2):105-16. doi: 10.2165/00822942-200504020-00004.
4
Prediction of unfolded segments in a protein sequence based on amino acid composition.
Bioinformatics. 2005 May 1;21(9):1891-900. doi: 10.1093/bioinformatics/bti266. Epub 2005 Jan 18.
5
Intrinsic disorder in protein interactions: insights from a comprehensive structural analysis.
PLoS Comput Biol. 2009 Mar;5(3):e1000316. doi: 10.1371/journal.pcbi.1000316. Epub 2009 Mar 13.
6
Protein disorder prediction by condensed PSSM considering propensity for order or disorder.
BMC Bioinformatics. 2006 Jun 23;7:319. doi: 10.1186/1471-2105-7-319.
7
Natively disordered proteins: functions and predictions.
Appl Bioinformatics. 2004;3(2-3):105-13. doi: 10.2165/00822942-200403020-00005.
8
Prediction of protein structural class for the twilight zone sequences.
Biochem Biophys Res Commun. 2007 Jun 1;357(2):453-60. doi: 10.1016/j.bbrc.2007.03.164. Epub 2007 Apr 5.
9
Relaxation to native conformation of a bond-fluctuating protein chain with hydrophobic and polar nodes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):052904. doi: 10.1103/PhysRevE.70.052904. Epub 2004 Nov 30.
10
IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content.
Bioinformatics. 2005 Aug 15;21(16):3433-4. doi: 10.1093/bioinformatics/bti541. Epub 2005 Jun 14.

引用本文的文献

2
Global genetic diversity and evolutionary patterns among populations.
Front Microbiol. 2022 Sep 26;13:1022016. doi: 10.3389/fmicb.2022.1022016. eCollection 2022.
4
Polerovirus genomic variation.
Virus Evol. 2021 Dec 4;7(2):veab102. doi: 10.1093/ve/veab102. eCollection 2021 Sep.
5
DISOselect: Disorder predictor selection at the protein level.
Protein Sci. 2020 Jan;29(1):184-200. doi: 10.1002/pro.3756. Epub 2019 Nov 7.
6
Prediction of protein disorder based on IUPred.
Protein Sci. 2018 Jan;27(1):331-340. doi: 10.1002/pro.3334. Epub 2017 Nov 16.
7
Structural characterizations of phosphorylatable residues in transmembrane proteins from .
Intrinsically Disord Proteins. 2013 Apr 1;1(1):e25713. doi: 10.4161/idp.25713. eCollection 2013 Jan-Dec.
8
General overview on structure prediction of twilight-zone proteins.
Theor Biol Med Model. 2015 Sep 4;12:15. doi: 10.1186/s12976-015-0014-1.

本文引用的文献

1
Enumerating Designing Sequences in the HP Model.
J Biol Phys. 2002 Mar;28(1):1-15. doi: 10.1023/A:1016225010659.
2
Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions.
Trends Biochem Sci. 2008 Jan;33(1):2-8. doi: 10.1016/j.tibs.2007.10.003. Epub 2007 Nov 28.
3
Correlated substitution analysis and the prediction of amino acid structural contacts.
Brief Bioinform. 2008 Jan;9(1):46-56. doi: 10.1093/bib/bbm052. Epub 2007 Nov 13.
5
Natively unstructured regions in proteins identified from contact predictions.
Bioinformatics. 2007 Sep 15;23(18):2376-84. doi: 10.1093/bioinformatics/btm349. Epub 2007 Aug 20.
6
Molecular principles of the interactions of disordered proteins.
J Mol Biol. 2007 Sep 14;372(2):549-61. doi: 10.1016/j.jmb.2007.07.004. Epub 2007 Jul 12.
8
Predicting mostly disordered proteins by using structure-unknown protein data.
BMC Bioinformatics. 2007 Mar 6;8:78. doi: 10.1186/1471-2105-8-78.
9
Role of intrinsic disorder in transient interactions of hub proteins.
Proteins. 2007 Mar 1;66(4):761-5. doi: 10.1002/prot.21281.
10
Predicting residue contacts using pragmatic correlated mutations method: reducing the false positives.
BMC Bioinformatics. 2006 Nov 16;7:503. doi: 10.1186/1471-2105-7-503.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验