Suppr超能文献

Low-affinity excitatory amino acid uptake in hippocampal astrocytes: a possible role of Na+/dicarboxylate cotransporters.

作者信息

Holten Aleksander Talgøy, Danbolt Niels Christian, Shimamoto Keiko, Gundersen Vidar

机构信息

Department of Anatomy and the CMBN, University of Oslo, Norway.

出版信息

Glia. 2008 Jul;56(9):990-7. doi: 10.1002/glia.20672.

Abstract

The excitatory amino acid transporters (EAATs) underlie the so-called "high affinity" uptake of glutamate, which is well characterized. In contrast, the "low-affinity" uptake of glutamate remains poorly defined, and it has been discussed whether it may represent a mere in vitro artifact. Here we have visualized "low-affinity" excitatory amino acid uptake sites by incubating rat hippocampal slices with the glutamate analogue D-aspartate in the presence of PMB-TBOA, which blocks the EAATs. After fixation of the slices, D-aspartate taken up into the tissue was localized with the use of light microscopic immunoperoxidase and electron microscopic immunogold methods, exploiting highly specific antibodies against D-aspartate. PMB-TBOA blocked uptake of both low and high exogenous D-aspartate concentrations (0.01-1.0 mM) into nerve terminals, as well as the uptake of 0.01 mM D-aspartate into astrocytes. Interestingly, there was a residual PMB-TBOA insensitive uptake of D-aspartate in astrocytes at higher exogenous D-aspartate concentrations (0.05-1.0 mM), strongly suggesting that astrocytes have "low-affinity" uptake sites for excitatory amino acid. The PMB-TBOA insensitive D-aspartate uptake in astrocytes was sodium dependent and inhibited by succinate and to certain extent by homocysteate, but not by cystine or DIDS. We suggest that excitatory amino acid is transported into astrocytes in a "low-affinity" fashion by sodium/dicarboxylate transporters.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验