Suppr超能文献

谷胱甘肽代谢的数学模型。

A mathematical model of glutathione metabolism.

作者信息

Reed Michael C, Thomas Rachel L, Pavisic Jovana, James S Jill, Ulrich Cornelia M, Nijhout H Frederik

机构信息

Department of Mathematics, Duke University, Durham, NC 27708, USA.

出版信息

Theor Biol Med Model. 2008 Apr 28;5:8. doi: 10.1186/1742-4682-5-8.

Abstract

BACKGROUND

Glutathione (GSH) plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism.

APPROACH

We explore the properties of glutathione metabolism in the liver by experimenting with a mathematical model of one-carbon metabolism, the transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is based on known properties of the enzymes and the regulation of those enzymes by oxidative stress. We explore the half-life of glutathione, the regulation of glutathione synthesis, and its sensitivity to fluctuations in amino acid input. We use the model to simulate the metabolic profiles previously observed in Down syndrome and autism and compare the model results to clinical data.

CONCLUSION

We show that the glutathione pools in hepatic cells and in the blood are quite insensitive to fluctuations in amino acid input and offer an explanation based on model predictions. In contrast, we show that hepatic glutathione pools are highly sensitive to the level of oxidative stress. The model shows that overexpression of genes on chromosome 21 and an increase in oxidative stress can explain the metabolic profile of Down syndrome. The model also correctly simulates the metabolic profile of autism when oxidative stress is substantially increased and the adenosine concentration is raised. Finally, we discuss how individual variation arises and its consequences for one-carbon and glutathione metabolism.

摘要

背景

谷胱甘肽(GSH)在抗氧化防御和解毒反应中发挥着重要作用。它主要在肝脏中通过转硫途径合成,并输出以提供前体物质,供其他组织进行谷胱甘肽的原位合成。谷胱甘肽缺乏与衰老以及包括阿尔茨海默病、帕金森病、心血管疾病、癌症、唐氏综合征和自闭症在内的一系列疾病有关。

方法

我们通过对一碳代谢、转硫途径以及谷胱甘肽合成、运输和分解的数学模型进行实验,来探究肝脏中谷胱甘肽代谢的特性。该模型基于酶的已知特性以及氧化应激对这些酶的调节作用。我们探究了谷胱甘肽的半衰期、谷胱甘肽合成的调节及其对氨基酸输入波动的敏感性。我们使用该模型模拟先前在唐氏综合征和自闭症中观察到的代谢谱,并将模型结果与临床数据进行比较。

结论

我们表明,肝细胞和血液中的谷胱甘肽池对氨基酸输入的波动相当不敏感,并基于模型预测给出了解释。相比之下,我们表明肝脏中的谷胱甘肽池对氧化应激水平高度敏感。该模型表明,21号染色体上基因的过表达以及氧化应激的增加可以解释唐氏综合征的代谢谱。当氧化应激大幅增加且腺苷浓度升高时,该模型还能正确模拟自闭症的代谢谱。最后,我们讨论了个体差异是如何产生的及其对一碳代谢和谷胱甘肽代谢的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcfa/2391141/5eb6419126fe/1742-4682-5-8-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验