Suppr超能文献

躯干拮抗肌共同激活与神经肌肉功能受损有关。

Trunk antagonist co-activation is associated with impaired neuromuscular performance.

作者信息

Reeves N Peter, Cholewicki Jacek, Milner Theodore, Lee Angela S

机构信息

Center for Orthopedic Research, Osteopathic Surgical Specialties, College of Osteopathic Medicine, Michigan State University, Ingham Regional Orthopedic Hospital, 2727 S. Pennsylvania Ave., Rm 230, Lansing, MI 48910, USA.

出版信息

Exp Brain Res. 2008 Jul;188(3):457-63. doi: 10.1007/s00221-008-1378-9. Epub 2008 Apr 29.

Abstract

The goal of this paper was to determine if trunk antagonist activation is associated with impaired neuromuscular performance. To test this theory, we used two methods to impair neuromuscular control: strenuous exertions and fatigue. Force variability (standard deviation of force signal) was assessed for graded isometric trunk exertions (10, 20, 40, 60, 80% of max) in flexion and extension, and at the start and end of a trunk extensor fatiguing trial. Normalized EMG signals for five trunk muscle pairs (RA rectus abdominis, EO external oblique, IO internal oblique, TE thoracic erector spinae, and LE lumbar erector spinae) were collected for each graded exertion, and at the start and end of a trunk extensor fatiguing trial. Force variability increased for more strenuous exertions in both flexion (P < 0.001) and extension (P < 0.001), and after extensor fatigue (P < 0.012). In the flexion direction, both antagonist muscles (TE and LE) increased activation for more strenuous exertions (P < 0.001). In the extension direction, all antagonist muscles except RA increased activation for more strenuous exertions (P < 0.05) and following fatigue (P < 0.01). These data demonstrate a strong relationship between force variability and antagonistic muscle activation, irrespective of where this variability comes from. Such antagonistic co-activation increases trunk stiffness with the possible objective of limiting kinematic disturbances due to greater force variability.

摘要

本文的目的是确定躯干拮抗肌激活是否与神经肌肉功能受损有关。为了验证这一理论,我们使用了两种方法来损害神经肌肉控制:剧烈运动和疲劳。在躯干屈伸的分级等长运动(最大力量的10%、20%、40%、60%、80%)中,以及在躯干伸肌疲劳试验开始和结束时,评估力量变异性(力量信号的标准差)。在每次分级运动以及躯干伸肌疲劳试验开始和结束时,收集五对躯干肌肉(腹直肌、腹外斜肌、腹内斜肌、胸段竖脊肌和腰段竖脊肌)的标准化肌电图信号。在屈伸运动中,随着运动强度增加,力量变异性均增加(屈曲时P<0.001,伸展时P<0.001),伸肌疲劳后力量变异性也增加(P<0.012)。在屈曲方向,两种拮抗肌(胸段竖脊肌和腰段竖脊肌)在运动强度增加时激活增强(P<0.001)。在伸展方向,除腹直肌外,所有拮抗肌在运动强度增加时(P<0.05)以及疲劳后(P<0.01)激活均增强。这些数据表明,无论力量变异性来自何处,力量变异性与拮抗肌激活之间都存在密切关系。这种拮抗肌共同激活会增加躯干僵硬度,可能目的是限制因更大的力量变异性而导致的运动干扰。

相似文献

1
Trunk antagonist co-activation is associated with impaired neuromuscular performance.
Exp Brain Res. 2008 Jul;188(3):457-63. doi: 10.1007/s00221-008-1378-9. Epub 2008 Apr 29.
2
Trunk muscle co-contraction increases during fatiguing, isometric, lateral bend exertions. Possible implications for spine stability.
Spine (Phila Pa 1976). 1998 Apr 1;23(7):774-80; discussion 781. doi: 10.1097/00007632-199804010-00006.
3
Electromyographic and Kinematic Analysis of the Flexion-Rotation Trunk Test.
J Strength Cond Res. 2020 Dec;34(12):3386-3394. doi: 10.1519/JSC.0000000000002168.
4
Estimation of trunk muscle forces and spinal loads during fatiguing repetitive trunk exertions.
Spine (Phila Pa 1976). 1998 Dec 1;23(23):2563-73. doi: 10.1097/00007632-199812010-00011.
5
Active trunk stiffness during voluntary isometric flexion and extension exertions.
Hum Factors. 2007 Feb;49(1):100-9. doi: 10.1518/001872007779597993.
7
Co-contraction recruitment and spinal load during isometric trunk flexion and extension.
Clin Biomech (Bristol). 2005 Dec;20(10):1029-37. doi: 10.1016/j.clinbiomech.2005.07.006. Epub 2005 Sep 9.
8
Can increased intra-abdominal pressure in humans be decoupled from trunk muscle co-contraction during steady state isometric exertions?
Eur J Appl Physiol. 2002 Jun;87(2):127-33. doi: 10.1007/s00421-002-0598-0. Epub 2002 Apr 5.
10
Posture-dependent trunk extensor EMG activity during maximum isometrics exertions in normal male and female subjects.
J Electromyogr Kinesiol. 2003 Oct;13(5):469-76. doi: 10.1016/s1050-6411(03)00060-9.

引用本文的文献

2
Muscle Quality and Functional and Conventional Ratios of Trunk Strength in Young Healthy Subjects: A Pilot Study.
Int J Environ Res Public Health. 2022 Oct 3;19(19):12673. doi: 10.3390/ijerph191912673.
4
Reliability of assessing postural control during seated balancing using a physical human-robot interaction.
J Biomech. 2017 Nov 7;64:198-205. doi: 10.1016/j.jbiomech.2017.09.036. Epub 2017 Oct 7.
5
Use of antagonist muscle EMG in the assessment of neuromuscular health of the low back.
J Physiol Anthropol. 2015 Apr 24;34(1):18. doi: 10.1186/s40101-015-0055-5.
6
Reliability of assessing trunk motor control using position and force tracking and stabilization tasks.
J Biomech. 2014 Jan 3;47(1):44-9. doi: 10.1016/j.jbiomech.2013.10.018. Epub 2013 Oct 22.
8
Fear of Movement Is Related to Trunk Stiffness in Low Back Pain.
PLoS One. 2013 Jun 27;8(6):e67779. doi: 10.1371/journal.pone.0067779. Print 2013.
9
Muscle fatigue does not lead to increased instability of upper extremity repetitive movements.
J Biomech. 2010 Mar 22;43(5):913-9. doi: 10.1016/j.jbiomech.2009.11.001. Epub 2009 Nov 26.
10
Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man.
Exp Brain Res. 2010 Jan;200(3-4):283-306. doi: 10.1007/s00221-009-2016-x. Epub 2009 Oct 9.

本文引用的文献

1
Corticospinal control of antagonistic muscles in the cat.
Eur J Neurosci. 2007 Sep;26(6):1632-41. doi: 10.1111/j.1460-9568.2007.05778.x.
2
Effect of lumbar extensor fatigue on paraspinal muscle reflexes.
J Electromyogr Kinesiol. 2006 Dec;16(6):637-41. doi: 10.1016/j.jelekin.2005.11.004. Epub 2006 Jan 6.
3
Impedance control balances stability with metabolically costly muscle activation.
J Neurophysiol. 2004 Nov;92(5):3097-105. doi: 10.1152/jn.00364.2004. Epub 2004 Jun 16.
4
Influence of fatigue in neuromuscular control of spinal stability.
Hum Factors. 2004 Spring;46(1):81-91. doi: 10.1518/hfes.46.1.81.30391.
5
The force/force-variability relationship under controlled temporal conditions.
J Mot Behav. 1988 Jun;20(2):106-16. doi: 10.1080/00222895.1988.10735436.
6
Optimal impedance control for task achievement in the presence of signal-dependent noise.
J Neurophysiol. 2004 Aug;92(2):1199-215. doi: 10.1152/jn.00519.2003. Epub 2004 Mar 31.
7
The scaling of motor noise with muscle strength and motor unit number in humans.
Exp Brain Res. 2004 Aug;157(4):417-30. doi: 10.1007/s00221-004-1856-7. Epub 2004 Mar 11.
8
Fatigue-related EMG responses of trunk muscles to a prolonged, isometric twist exertion.
Clin Biomech (Bristol). 1997 Jul;12(5):306-313. doi: 10.1016/s0268-0033(97)00013-2.
9
Variability and noise in continuous force production.
J Mot Behav. 2000 Jun;32(2):141-50. doi: 10.1080/00222890009601366.
10
Classification of low back pain with the use of spectral electromyogram parameters.
Spine (Phila Pa 1976). 1998 May 15;23(10):1117-23. doi: 10.1097/00007632-199805150-00009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验