Decristofaro Marc F, Daniels Kellye K
Biomarker Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA.
Methods Mol Biol. 2008;460:185-94. doi: 10.1007/978-1-60327-048-9_9.
In the area of toxicology, the subdiscipline of toxicogenomics has emerged, which is the use of genome-scale mRNA expression profiling to monitor responses to adverse xenobiotic exposure. Toxicogenomics is being investigated for use in the triage of compounds through predicting potential toxicity, defining mechanisms of toxicity, and identifying potential biomarkers of toxicity. Whereas various approaches have been reported for the development of algorithms predictive of toxicity and for the interpretation of gene expression data for deriving mechanisms of toxicity, there are no clearly defined methods for the discovery of biomarkers using gene expression technologies. Ways in which toxicogenomics may be used for biomarker discovery include analysis of large databases of gene expression profiles followed by in silico mining of the database for differentially expressed genes; the analysis of gene expression data from preclinical studies to find differentially expressed genes that correlate with pathology (coincident biomarker) or precede pathology (leading biomarker) within a lead series; or gene expression profiling can be performed directly on the blood from preclinical studies or clinical trials to find biomarkers that can be obtained noninvasively. This chapter broadly discusses the issues and the utility of applying toxicogenomics to biomarker discovery.
在毒理学领域,毒理基因组学这一亚学科应运而生,它是利用基因组规模的mRNA表达谱来监测对有害外源物暴露的反应。人们正在研究毒理基因组学在化合物分类中的应用,通过预测潜在毒性、确定毒性机制以及识别潜在的毒性生物标志物来实现。虽然已经报道了各种用于开发毒性预测算法以及解释基因表达数据以推导毒性机制的方法,但使用基因表达技术发现生物标志物尚无明确界定的方法。毒理基因组学可用于生物标志物发现的方式包括分析基因表达谱的大型数据库,随后在数据库中进行计算机挖掘以寻找差异表达基因;分析临床前研究的基因表达数据,以在先导系列中找到与病理学相关(重合生物标志物)或先于病理学出现(领先生物标志物)的差异表达基因;或者可以直接对临床前研究或临床试验的血液进行基因表达谱分析,以找到可以通过非侵入性获得的生物标志物。本章广泛讨论了将毒理基因组学应用于生物标志物发现的问题和实用性。