Weber Yvonne G, Storch Alexander, Wuttke Thomas V, Brockmann Knut, Kempfle Judith, Maljevic Snezana, Margari Lucia, Kamm Christoph, Schneider Susanne A, Huber Stephan M, Pekrun Arnulf, Roebling Robert, Seebohm Guiscard, Koka Saisudha, Lang Camelia, Kraft Eduard, Blazevic Dragica, Salvo-Vargas Alberto, Fauler Michael, Mottaghy Felix M, Münchau Alexander, Edwards Mark J, Presicci Anna, Margari Francesco, Gasser Thomas, Lang Florian, Bhatia Kailash P, Lehmann-Horn Frank, Lerche Holger
Neurologische Klinik and Institut für Anatomie und Zellbiologie, Universität Ulm, Ulm, Germany.
J Clin Invest. 2008 Jun;118(6):2157-68. doi: 10.1172/JCI34438.
Paroxysmal dyskinesias are episodic movement disorders that can be inherited or are sporadic in nature. The pathophysiology underlying these disorders remains largely unknown but may involve disrupted ion homeostasis due to defects in cell-surface channels or nutrient transporters. In this study, we describe a family with paroxysmal exertion-induced dyskinesia (PED) over 3 generations. Their PED was accompanied by epilepsy, mild developmental delay, reduced CSF glucose levels, hemolytic anemia with echinocytosis, and altered erythrocyte ion concentrations. Using a candidate gene approach, we identified a causative deletion of 4 highly conserved amino acids (Q282_S285del) in the pore region of the glucose transporter 1 (GLUT1). Functional studies in Xenopus oocytes and human erythrocytes revealed that this mutation decreased glucose transport and caused a cation leak that alters intracellular concentrations of sodium, potassium, and calcium. We screened 4 additional families, in which PED is combined with epilepsy, developmental delay, or migraine, but not with hemolysis or echinocytosis, and identified 2 additional GLUT1 mutations (A275T, G314S) that decreased glucose transport but did not affect cation permeability. Combining these data with brain imaging studies, we propose that the dyskinesias result from an exertion-induced energy deficit that may cause episodic dysfunction of the basal ganglia, and that the hemolysis with echinocytosis may result from alterations in intracellular electrolytes caused by a cation leak through mutant GLUT1.
发作性运动障碍是一类发作性的运动障碍性疾病,可呈遗传性或散发性。这些疾病的病理生理学机制在很大程度上仍不清楚,但可能涉及由于细胞表面通道或营养转运体缺陷导致的离子稳态破坏。在本研究中,我们描述了一个三代家族性发作性运动诱发性运动障碍(PED)病例。他们的PED伴有癫痫、轻度发育迟缓、脑脊液葡萄糖水平降低、伴有棘红细胞增多的溶血性贫血以及红细胞离子浓度改变。通过候选基因方法,我们在葡萄糖转运体1(GLUT1)的孔区域鉴定出一个导致4个高度保守氨基酸缺失(Q282_S285del)的致病突变。在非洲爪蟾卵母细胞和人类红细胞中的功能研究表明,该突变降低了葡萄糖转运,并导致阳离子泄漏,从而改变细胞内钠、钾和钙的浓度。我们对另外4个家族进行了筛查,这些家族中PED合并癫痫、发育迟缓或偏头痛,但不合并溶血或棘红细胞增多,并且鉴定出另外2个GLUT1突变(A275T、G314S),它们降低了葡萄糖转运,但不影响阳离子通透性。将这些数据与脑成像研究相结合,我们提出运动障碍是由运动诱发的能量缺乏导致的,这可能会引起基底神经节的发作性功能障碍,而伴有棘红细胞增多的溶血可能是由突变的GLUT1导致的阳离子泄漏引起的细胞内电解质改变所致。