Guillot Benoît, Jelsch Christian, Podjarny Alberto, Lecomte Claude
Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, LCM3B, CNRS, UMR 7036, Nancy Université, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre-lès-Nancy CEDEX, France.
Acta Crystallogr D Biol Crystallogr. 2008 May;64(Pt 5):567-88. doi: 10.1107/S0907444908006082. Epub 2008 Apr 19.
The valence electron density of the protein human aldose reductase was analyzed at 0.66 angstroms resolution. The methodological developments in the software MoPro to adapt standard charge-density techniques from small molecules to macromolecular structures are described. The deformation electron density visible in initial residual Fourier difference maps was significantly enhanced after high-order refinement. The protein structure was refined after transfer of the experimental library multipolar atom model (ELMAM). The effects on the crystallographic statistics, on the atomic thermal displacement parameters and on the structure stereochemistry are analyzed. Constrained refinements of the transferred valence populations Pval and multipoles Plm were performed against the X-ray diffraction data on a selected substructure of the protein with low thermal motion. The resulting charge densities are of good quality, especially for chemical groups with many copies present in the polypeptide chain. To check the effect of the starting point on the result of the constrained multipolar refinement, the same charge-density refinement strategy was applied but using an initial neutral spherical atom model, i.e. without transfer from the ELMAM library. The best starting point for a protein multipolar refinement is the structure with the electron density transferred from the database. This can be assessed by the crystallographic statistical indices, including Rfree, and the quality of the static deformation electron-density maps, notably on the oxygen electron lone pairs. The analysis of the main-chain bond lengths suggests that stereochemical dictionaries would benefit from a revision based on recently determined unrestrained atomic resolution protein structures.
在0.66埃分辨率下分析了人醛糖还原酶蛋白的价电子密度。描述了软件MoPro中的方法学进展,以将小分子的标准电荷密度技术应用于大分子结构。在高阶精修后,初始残余傅里叶差值图中可见的变形电子密度显著增强。在转移实验库多极原子模型(ELMAM)后对蛋白质结构进行了精修。分析了对晶体学统计、原子热位移参数和结构立体化学的影响。针对蛋白质低热运动的选定子结构的X射线衍射数据,对转移的价电子数Pval和多极子Plm进行了约束精修。所得电荷密度质量良好,特别是对于多肽链中存在多个拷贝的化学基团。为了检查起始点对约束多极精修结果的影响,应用了相同的电荷密度精修策略,但使用初始中性球形原子模型,即不从ELMAM库转移。蛋白质多极精修的最佳起始点是从数据库转移电子密度的结构。这可以通过包括Rfree在内的晶体学统计指标以及静态变形电子密度图的质量来评估,特别是在氧电子孤对上。主链键长分析表明,立体化学字典将受益于基于最近确定的无约束原子分辨率蛋白质结构的修订。