Suppr超能文献

人类大脑振荡的雪崩动力学:与临界分支过程及时间相关性的关系。

Avalanche dynamics of human brain oscillations: relation to critical branching processes and temporal correlations.

作者信息

Poil Simon-Shlomo, van Ooyen Arjen, Linkenkaer-Hansen Klaus

机构信息

Department of Experimental Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.

出版信息

Hum Brain Mapp. 2008 Jul;29(7):770-7. doi: 10.1002/hbm.20590.

Abstract

Human brain oscillations fluctuate erratically in amplitude during rest and exhibit power-law decay of temporal correlations. It has been suggested that this dynamics reflects self-organized activity near a critical state. In this framework, oscillation bursts may be interpreted as neuronal avalanches propagating in a network with a critical branching ratio. However, a direct comparison of the temporal structure of ongoing oscillations with that of activity propagation in a model network with critical connectivity has never been made. Here, we simulate branching processes and characterize the activity propagation in terms of avalanche life-time distributions and temporal correlations. An equivalent analysis is introduced for characterizing ongoing oscillations in the alpha-frequency band recorded with magnetoencephalography (MEG) during rest. We found that models with a branching ratio near the critical value of one exhibited power-law scaling in life-time distributions with similar scaling exponents as observed in the MEG data. The models reproduced qualitatively the power-law decay of temporal correlations in the human data; however, the correlations in the model appeared on time scales only up to the longest avalanche, whereas human data indicate persistence of correlations on time scales corresponding to several burst events. Our results support the idea that neuronal networks generating ongoing alpha oscillations during rest operate near a critical state, but also suggest that factors not included in the simple classical branching process are needed to account for the complex temporal structure of ongoing oscillations during rest on time scales longer than the duration of individual oscillation bursts.

摘要

人类大脑振荡在静息状态下的振幅会不规则地波动,并呈现出时间相关性的幂律衰减。有人认为,这种动力学反映了临界状态附近的自组织活动。在这个框架中,振荡爆发可以被解释为在具有临界分支比的网络中传播的神经元雪崩。然而,从未对正在进行的振荡的时间结构与具有临界连通性的模型网络中的活动传播的时间结构进行过直接比较。在这里,我们模拟分支过程,并根据雪崩寿命分布和时间相关性来表征活动传播。我们引入了一种等效分析来表征静息期间用脑磁图(MEG)记录的α频段正在进行的振荡。我们发现,分支比接近临界值1的模型在寿命分布中表现出幂律缩放,其缩放指数与MEG数据中观察到的相似。这些模型定性地再现了人类数据中时间相关性的幂律衰减;然而,模型中的相关性仅在长达最长雪崩的时间尺度上出现,而人类数据表明在对应于几个爆发事件的时间尺度上相关性持续存在。我们的结果支持这样一种观点,即静息期间产生正在进行的α振荡的神经网络在临界状态附近运行,但也表明需要简单经典分支过程中未包含的因素来解释静息期间正在进行的振荡在比单个振荡爆发持续时间更长的时间尺度上的复杂时间结构。

相似文献

2
Neuronal avalanches in the resting MEG of the human brain.
J Neurosci. 2013 Apr 17;33(16):7079-90. doi: 10.1523/JNEUROSCI.4286-12.2013.
3
Long-range temporal correlations and scaling behavior in human brain oscillations.
J Neurosci. 2001 Feb 15;21(4):1370-7. doi: 10.1523/JNEUROSCI.21-04-01370.2001.
4
Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3585-90. doi: 10.1073/pnas.1216855110. Epub 2013 Feb 11.
5
Self-regulated critical brain dynamics originate from high frequency-band activity in the MEG.
PLoS One. 2020 Jun 11;15(6):e0233589. doi: 10.1371/journal.pone.0233589. eCollection 2020.
7
Relationship of fast- and slow-timescale neuronal dynamics in human MEG and SEEG.
J Neurosci. 2015 Apr 1;35(13):5385-96. doi: 10.1523/JNEUROSCI.4880-14.2015.
10
Long-range temporal correlations in resting-state α oscillations predict human timing-error dynamics.
J Neurosci. 2013 Jul 3;33(27):11212-20. doi: 10.1523/JNEUROSCI.2816-12.2013.

引用本文的文献

1
Excitatory-inhibitory homeostasis and bifurcation control in the Wilson-Cowan model of cortical dynamics.
PLoS Comput Biol. 2025 Jan 6;21(1):e1012723. doi: 10.1371/journal.pcbi.1012723. eCollection 2025 Jan.
2
Failure in a population: Tauopathy disrupts homeostatic set-points in emergent dynamics despite stability in the constituent neurons.
Neuron. 2024 Nov 6;112(21):3567-3584.e5. doi: 10.1016/j.neuron.2024.08.006. Epub 2024 Sep 5.
3
Theoretical foundations of studying criticality in the brain.
Netw Neurosci. 2022 Oct 1;6(4):1148-1185. doi: 10.1162/netn_a_00269. eCollection 2022.
4
Neural criticality from effective latent variables.
Elife. 2024 Mar 12;12:RP89337. doi: 10.7554/eLife.89337.
5
Parabolic avalanche scaling in the synchronization of cortical cell assemblies.
Nat Commun. 2023 May 3;14(1):2555. doi: 10.1038/s41467-023-37976-x.
6
Neural criticality from effective latent variables.
ArXiv. 2023 Oct 13:arXiv:2301.00759v3.
7
Scale-free dynamics of core-periphery topography.
Hum Brain Mapp. 2023 Apr 1;44(5):1997-2017. doi: 10.1002/hbm.26187. Epub 2022 Dec 29.
8
Addressing skepticism of the critical brain hypothesis.
Front Comput Neurosci. 2022 Sep 15;16:703865. doi: 10.3389/fncom.2022.703865. eCollection 2022.
10
Short- and Long-Range Connections Differentially Modulate the Dynamics and State of Small-World Networks.
Front Comput Neurosci. 2022 Jan 25;15:783474. doi: 10.3389/fncom.2021.783474. eCollection 2021.

本文引用的文献

1
Genetic contributions to long-range temporal correlations in ongoing oscillations.
J Neurosci. 2007 Dec 12;27(50):13882-9. doi: 10.1523/JNEUROSCI.3083-07.2007.
2
A simple growth model constructs critical avalanche networks.
Prog Brain Res. 2007;165:13-9. doi: 10.1016/S0079-6123(06)65002-4.
3
The criticality hypothesis: how local cortical networks might optimize information processing.
Philos Trans A Math Phys Eng Sci. 2008 Feb 13;366(1864):329-43. doi: 10.1098/rsta.2007.2092.
4
Electrophysiological signatures of resting state networks in the human brain.
Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5. doi: 10.1073/pnas.0700668104. Epub 2007 Aug 1.
5
On the dynamics of the spontaneous activity in neuronal networks.
PLoS One. 2007 May 9;2(5):e439. doi: 10.1371/journal.pone.0000439.
6
The organizing principles of neuronal avalanches: cell assemblies in the cortex?
Trends Neurosci. 2007 Mar;30(3):101-10. doi: 10.1016/j.tins.2007.01.005. Epub 2007 Feb 1.
7
Epileptogenic neocortical networks are revealed by abnormal temporal dynamics in seizure-free subdural EEG.
Cereb Cortex. 2007 Jun;17(6):1386-93. doi: 10.1093/cercor/bhl049. Epub 2006 Aug 14.
8
Variability, compensation and homeostasis in neuron and network function.
Nat Rev Neurosci. 2006 Jul;7(7):563-74. doi: 10.1038/nrn1949.
9
Self-organized criticality model for brain plasticity.
Phys Rev Lett. 2006 Jan 20;96(2):028107. doi: 10.1103/PhysRevLett.96.028107. Epub 2006 Jan 19.
10
Assessment of long-range correlation in time series: how to avoid pitfalls.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 2):016117. doi: 10.1103/PhysRevE.73.016117. Epub 2006 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验