Chung Yeon-Wook, Lee Jeong-Kyu, Zin Wang-Cheol, Cho Byoung-Ki
Department of Chemistry and Institute of Nanosensor and Biotechnology, Dankook University, Gyeonggi-Do, 448-701, Korea.
J Am Chem Soc. 2008 Jun 4;130(22):7139-47. doi: 10.1021/ja801163m. Epub 2008 May 3.
We prepared a series of amphiphilic dendron coils (1-3) containing aliphatic polyether dendrons with octadecyl peripheries and a poly(ethylene oxide) (PEO) coil (DP = 44). The molecular design in this study is focused on the variation of dendron generation (from first to third) with a fixed linear coil, upon which the thermal and self-assembling behavior of the dendron coils was investigated in the bulk. All the dendron coils exhibit two crystalline phases designated as k1 (both crystalline octadecyl chains and PEO) and k2 states (crystalline octadecyl chains and molten PEO). Crystallinities for both octadecyl peripheries and the PEO decrease as generation increases. In particular, the dendron coil (3) containing third generation shows a drastic reduction of the PEO crystallinity, which is attributed to the considerable chain folding and plasticization effects by the largest hydrophilic dendritic core segment. All the crystalline phases are bilayered lamellar morphologies. On going from k1 to k2, the periodic lamellar thickness decreases in the dendron coil (1) with first generation, but interestingly increases in 3. After melting of octadecyl peripheries, 1 shows no mesophase (i.e., liquid crystalline phase). Additionally, dendron coil 2 (3) displays a network cubic mesophase with Ia3d symmetry (micellar cubic with Pm3n) which is transformed into a lamellar (hexagonal columnar) mesophase upon heating. Remarkably, the temperature-dependent mesomorphic behavior in 2 and 3 is a completely reverse pattern in comparison with conventional linear-linear block copolymers. The unusual bulk morphological phenomena in the crystalline and liquid crystalline phases can be elucidated by the dendron coil architecture and the associated coil conformational energy.
我们制备了一系列两亲性树枝状线圈(1-3),其包含带有十八烷基外围的脂肪族聚醚树枝状分子和聚环氧乙烷(PEO)线圈(聚合度 = 44)。本研究中的分子设计聚焦于在固定线性线圈的情况下树枝状分子代数(从第一代到第三代)的变化,在此基础上研究了树枝状线圈在本体中的热行为和自组装行为。所有树枝状线圈均呈现出两种晶相,分别指定为k1(结晶的十八烷基链和PEO)和k2态(结晶的十八烷基链和熔融的PEO)。随着代数增加,十八烷基外围和PEO的结晶度均降低。特别地,含有第三代的树枝状线圈(3)显示出PEO结晶度的急剧降低,这归因于最大的亲水性树枝状核心链段产生的显著链折叠和增塑效应。所有晶相均为双层片状形态。从k1到k2,第一代树枝状线圈(1)的层状周期厚度减小,但有趣的是在(3)中增加。十八烷基外围熔融后,(1)未显示中间相(即液晶相)。此外,树枝状线圈2(3)呈现出具有Ia3d对称性的网络立方中间相(具有Pm3n的胶束立方相),加热时转变为层状(六方柱状)中间相。值得注意的是,与传统的线性-线性嵌段共聚物相比,(2)和(3)中与温度相关的介晶行为呈现出完全相反的模式。树枝状线圈结构及相关的线圈构象能可以解释结晶相和液晶相中异常的本体形态现象。