Kouwen Thijs R H M, Andréll Juni, Schrijver Rianne, Dubois Jean-Yves F, Maher Megan J, Iwata So, Carpenter Elisabeth P, van Dijl Jan Maarten
Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands.
J Mol Biol. 2008 Jun 6;379(3):520-34. doi: 10.1016/j.jmb.2008.03.077. Epub 2008 Apr 10.
Thioredoxin functions in nearly all organisms as the major thiol-disulfide oxidoreductase within the cytosol. Its prime purpose is to maintain cysteine-containing proteins in the reduced state by converting intramolecular disulfide bonds into dithiols in a disulfide exchange reaction. Thioredoxin has been reported to contribute to a wide variety of physiological functions by interacting with specific sets of substrates in different cell types. To investigate the function of the essential thioredoxin A (TrxA) in the low-GC Gram-positive bacterium Bacillus subtilis, we purified wild-type TrxA and three mutant TrxA proteins that lack either one or both of the two cysteine residues in the CxxC active site. The pure proteins were used for substrate-binding studies known as "mixed disulfide fishing" in which covalent disulfide-bonded reaction intermediates can be visualized. An unprecedented finding is that both active-site cysteine residues can form mixed disulfides with substrate proteins when the other active-site cysteine is absent, but only the N-terminal active-site cysteine forms stable interactions. A second novelty is that both single-cysteine mutant TrxA proteins form stable homodimers due to thiol oxidation of the remaining active-site cysteine residue. To investigate whether these dimers resemble mixed enzyme-substrate disulfides, the structure of the most abundant dimer, C32S, was characterized by X-ray crystallography. This yielded a high-resolution (1.5A) X-ray crystallographic structure of a thioredoxin homodimer from a low-GC Gram-positive bacterium. The C32S TrxA dimer can be regarded as a mixed disulfide reaction intermediate of thioredoxin, which reveals the diversity of thioredoxin/substrate-binding modes.
硫氧还蛋白在几乎所有生物体中作为胞质溶胶内主要的硫醇-二硫键氧化还原酶发挥作用。其主要目的是通过在二硫键交换反应中将分子内二硫键转化为二硫醇,使含半胱氨酸的蛋白质维持在还原状态。据报道,硫氧还蛋白通过与不同细胞类型中的特定底物相互作用,参与多种生理功能。为了研究低GC革兰氏阳性细菌枯草芽孢杆菌中必需的硫氧还蛋白A(TrxA)的功能,我们纯化了野生型TrxA和三种突变型TrxA蛋白,它们在CxxC活性位点缺失一个或两个半胱氨酸残基。这些纯蛋白用于称为“混合二硫键捕获”的底物结合研究,在该研究中可以观察到共价二硫键结合的反应中间体。一个前所未有的发现是,当另一个活性位点半胱氨酸不存在时,两个活性位点半胱氨酸残基都可以与底物蛋白形成混合二硫键,但只有N端活性位点半胱氨酸形成稳定的相互作用。第二个新奇之处是,由于剩余活性位点半胱氨酸残基的硫醇氧化,两种单半胱氨酸突变型TrxA蛋白都形成稳定的同二聚体。为了研究这些二聚体是否类似于混合的酶-底物二硫键,通过X射线晶体学对最丰富的二聚体C32S的结构进行了表征。这产生了来自低GC革兰氏阳性细菌的硫氧还蛋白同二聚体的高分辨率(1.5埃)X射线晶体结构。C32S TrxA二聚体可被视为硫氧还蛋白的混合二硫键反应中间体,这揭示了硫氧还蛋白/底物结合模式的多样性。