Suppr超能文献

功能性磷酸丙糖异构酶蛋白的降解是糖杀伤病理的基础。

Degradation of functional triose phosphate isomerase protein underlies sugarkill pathology.

作者信息

Seigle Jacquelyn L, Celotto Alicia M, Palladino Michael J

机构信息

Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.

出版信息

Genetics. 2008 Jun;179(2):855-62. doi: 10.1534/genetics.108.087551. Epub 2008 May 5.

Abstract

Triose phosphate isomerase (TPI) deficiency glycolytic enzymopathy is a progressive neurodegenerative condition that remains poorly understood. The disease is caused exclusively by specific missense mutations affecting the TPI protein and clinically features hemolytic anemia, adult-onset neurological impairment, degeneration, and reduced longevity. TPI has a well-characterized role in glycolysis, catalyzing the isomerization of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P); however, little is known mechanistically about the pathogenesis associated with specific recessive mutations that cause progressive neurodegeneration. Here, we describe key aspects of TPI pathogenesis identified using the TPI(sugarkill) mutation, a Drosophila model of human TPI deficiency. Specifically, we demonstrate that the mutant protein is expressed, capable of forming a homodimer, and is functional. However, the mutant protein is degraded by the 20S proteasome core leading to loss-of-function pathogenesis.

摘要

磷酸丙糖异构酶(TPI)缺乏性糖酵解酶病是一种进行性神经退行性疾病,目前人们对其了解甚少。该疾病完全由影响TPI蛋白的特定错义突变引起,临床特征为溶血性贫血、成人期神经功能损害、变性和寿命缩短。TPI在糖酵解中具有明确的作用,催化磷酸二羟丙酮(DHAP)异构化为3-磷酸甘油醛(G3P);然而,对于导致进行性神经退行性变的特定隐性突变相关的发病机制,从机制上了解甚少。在这里,我们描述了使用人类TPI缺乏症的果蝇模型TPI(sugarkill)突变鉴定出的TPI发病机制的关键方面。具体而言,我们证明突变蛋白能够表达、形成同二聚体且具有功能。然而,突变蛋白被20S蛋白酶体核心降解,导致功能丧失性发病机制。

相似文献

1
Degradation of functional triose phosphate isomerase protein underlies sugarkill pathology.
Genetics. 2008 Jun;179(2):855-62. doi: 10.1534/genetics.108.087551. Epub 2008 May 5.
2
Hsp70- and Hsp90-mediated proteasomal degradation underlies TPI sugarkill pathogenesis in Drosophila.
Neurobiol Dis. 2010 Dec;40(3):676-83. doi: 10.1016/j.nbd.2010.08.011. Epub 2010 Aug 19.
3
Evidence of a triosephosphate isomerase non-catalytic function crucial to behavior and longevity.
J Cell Sci. 2013 Jul 15;126(Pt 14):3151-8. doi: 10.1242/jcs.124586. Epub 2013 May 2.
4
Drosophila model of human inherited triosephosphate isomerase deficiency glycolytic enzymopathy.
Genetics. 2006 Nov;174(3):1237-46. doi: 10.1534/genetics.106.063206. Epub 2006 Sep 15.
5
Identification of protein quality control regulators using a Drosophila model of TPI deficiency.
Neurobiol Dis. 2021 May;152:105299. doi: 10.1016/j.nbd.2021.105299. Epub 2021 Feb 15.
6
Early mitochondrial dysfunction leads to altered redox chemistry underlying pathogenesis of TPI deficiency.
Neurobiol Dis. 2013 Jun;54:289-96. doi: 10.1016/j.nbd.2012.12.020. Epub 2013 Jan 12.
7
Triosephosphate isomerase I170V alters catalytic site, enhances stability and induces pathology in a Drosophila model of TPI deficiency.
Biochim Biophys Acta. 2015 Jan;1852(1):61-9. doi: 10.1016/j.bbadis.2014.10.010. Epub 2014 Oct 16.
9
Missense variant in TPI1 (Arg189Gln) causes neurologic deficits through structural changes in the triosephosphate isomerase catalytic site and reduced enzyme levels in vivo.
Biochim Biophys Acta Mol Basis Dis. 2019 Sep 1;1865(9):2257-2266. doi: 10.1016/j.bbadis.2019.05.002. Epub 2019 May 7.

引用本文的文献

1
Triose-phosphate isomerase deficiency is associated with a dysregulation of synaptic vesicle recycling in .
Front Synaptic Neurosci. 2023 Feb 28;15:1124061. doi: 10.3389/fnsyn.2023.1124061. eCollection 2023.
2
Murine model of triosephosphate isomerase deficiency with anemia and severe neuromuscular dysfunction.
Curr Res Neurobiol. 2022 Nov 9;3:100062. doi: 10.1016/j.crneur.2022.100062. eCollection 2022.
6
Identification of protein quality control regulators using a Drosophila model of TPI deficiency.
Neurobiol Dis. 2021 May;152:105299. doi: 10.1016/j.nbd.2021.105299. Epub 2021 Feb 15.
7
Pilot Evaluation of Two Biomarkers for Supporting Triclabendazole (TCBZ) Efficacy Diagnostics.
Molecules. 2020 Jul 30;25(15):3477. doi: 10.3390/molecules25153477.
8
Missense variant in TPI1 (Arg189Gln) causes neurologic deficits through structural changes in the triosephosphate isomerase catalytic site and reduced enzyme levels in vivo.
Biochim Biophys Acta Mol Basis Dis. 2019 Sep 1;1865(9):2257-2266. doi: 10.1016/j.bbadis.2019.05.002. Epub 2019 May 7.
10
Flux Control in Glycolysis Varies Across the Tree of Life.
J Mol Evol. 2016 Mar;82(2-3):146-61. doi: 10.1007/s00239-016-9731-2. Epub 2016 Feb 26.

本文引用的文献

1
Triosephosphate isomerase deficiency: facts and doubts.
IUBMB Life. 2006 Dec;58(12):703-15. doi: 10.1080/15216540601115960.
2
Mechanisms of disease II: cellular protein quality control.
Semin Pediatr Neurol. 2007 Mar;14(1):15-25. doi: 10.1016/j.spen.2006.11.005.
4
wasted away, a Drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration, and early death.
Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):14987-93. doi: 10.1073/pnas.0606887103. Epub 2006 Sep 28.
5
Drosophila model of human inherited triosephosphate isomerase deficiency glycolytic enzymopathy.
Genetics. 2006 Nov;174(3):1237-46. doi: 10.1534/genetics.106.063206. Epub 2006 Sep 15.
6
Ubiquitin-proteasome system and Parkinson's disease.
Mov Disord. 2006 Nov;21(11):1806-23. doi: 10.1002/mds.21013.
7
Proteasome inhibitor-induced model of Parkinson's disease.
Ann Neurol. 2006 Aug;60(2):243-7. doi: 10.1002/ana.20936.
8
Proteasome inhibition induces reversible impairments in protein synthesis.
FASEB J. 2006 Jun;20(8):1055-63. doi: 10.1096/fj.05-5495com.
10
The unfolded protein response: a stress signaling pathway critical for health and disease.
Neurology. 2006 Jan 24;66(2 Suppl 1):S102-9. doi: 10.1212/01.wnl.0000192306.98198.ec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验