Quinlan Michelle E, Alberto Christian O, Hirasawa Michiru
Division of BioMedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St John's, NL A1B 3V6, Canada.
J Physiol. 2008 Jul 1;586(13):3147-61. doi: 10.1113/jphysiol.2007.148957. Epub 2008 May 8.
The glutamatergic synapses of the supraoptic nucleus display a unique activity-dependent plasticity characterized by a barrage of tetrodotoxin-resistant miniature EPSCs (mEPSCs) persisting for 5-20 min, causing postsynaptic excitation. We investigated how this short-term synaptic potentiation (STP) induced by a brief high-frequency stimulation (HFS) of afferents was initiated and maintained without lingering presynaptic firing, using in vitro patch-clamp recording on rat brain slices. We found that following the immediate rise in mEPSC frequency, STP decayed with two-exponential functions indicative of two discrete phases. STP depends entirely on extracellular Ca(2+) which enters the presynaptic terminals through voltage-gated Ca(2+) channels but also, to a much lesser degree, through a pathway independent of these channels or reverse mode of the plasma membrane Na(+)-Ca(2+) exchanger. Initiation of STP is largely mediated by any of the N-, P/Q- or L-type channels, and only a simultaneous application of specific blockers for all these channels attenuates STP. Furthermore, the second phase of STP is curtailed by the inhibition of mitochondrial Ca(2+) uptake or mitochondrial Na(+)-Ca(2+) exchanger. mEPSCs amplitude is also potentiated by HFS which requires extracellular Ca(2+). In conclusion, induction of mEPSC-STP is redundantly mediated by presynaptic N-, P/Q- and L-type Ca(2+) channels while the second phase depends on mitochondrial Ca(2+) sequestration and release. Since glutamate influences unique firing patterns that optimize hormone release by supraoptic magnocellular neurons, a prolonged barrage of spontaneous excitatory transmission may aid in the induction of respective firing activities.
视上核的谷氨酸能突触表现出独特的活动依赖性可塑性,其特征是一连串持续5 - 20分钟的河豚毒素抗性微小兴奋性突触后电流(mEPSCs),引起突触后兴奋。我们使用大鼠脑片的体外膜片钳记录,研究了传入神经的短暂高频刺激(HFS)诱导的这种短期突触增强(STP)是如何在没有持续的突触前放电的情况下启动和维持的。我们发现,在mEPSC频率立即升高之后,STP以两个指数函数衰减,表明存在两个离散阶段。STP完全依赖于细胞外Ca(2+),其通过电压门控Ca(2+)通道进入突触前终末,但在较小程度上也通过独立于这些通道的途径或质膜Na(+)-Ca(2+)交换器的反向模式进入。STP的启动主要由任何一种N型、P/Q型或L型通道介导,只有同时应用所有这些通道的特异性阻滞剂才能减弱STP。此外,STP的第二阶段通过抑制线粒体Ca(2+)摄取或线粒体Na(+)-Ca(2+)交换器而缩短。HFS也增强了mEPSCs的幅度,这需要细胞外Ca(2+)。总之,mEPSC-STP的诱导由突触前N型、P/Q型和L型Ca(2+)通道冗余介导,而第二阶段取决于线粒体Ca(2+)的螯合和释放。由于谷氨酸影响独特的放电模式,这些模式优化了视上大细胞神经元的激素释放,因此一连串延长的自发兴奋性传递可能有助于诱导相应的放电活动。