O-Uchi Jin, Sasaki Hiroyuki, Morimoto Satoshi, Kusakari Yoichiro, Shinji Hitomi, Obata Toru, Hongo Kenichi, Komukai Kimiaki, Kurihara Satoshi
Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461 Japan.
Circ Res. 2008 Jun 6;102(11):1378-88. doi: 10.1161/CIRCRESAHA.107.167734. Epub 2008 May 8.
We examined the effect of alpha(1)-adrenoceptor subtype-specific stimulation on L-type Ca2+ current (I(Ca)) and elucidated the subtype-specific intracellular mechanisms for the regulation of L-type Ca2+ channels in isolated rat ventricular myocytes. We confirmed the protein expression of alpha(1A)- and alpha(1B)-adrenoceptor subtypes at the transverse tubules (T-tubules) and found that simultaneous stimulation of these 2 receptor subtypes by nonsubtype selective agonist, phenylephrine, showed 2 opposite effects on I(Ca) (transient decrease followed by sustained increase). However, selective alpha(1A)-adrenoceptor stimulation (> or =0.1 micromol/L A61603) only potentiated I(Ca), and selective alpha(1B)-adrenoceptor stimulation (10 mumol/L phenylephrine with 2 micromol/L WB4101) only decreased I(Ca). The positive effect by alpha(1A)-adrenoceptor stimulation was blocked by the inhibition of phospholipase C (PLC), protein kinase C (PKC), or Ca2+/calmodulin-dependent protein kinase II (CaMKII). The negative effect by alpha(1B)-adrenoceptor stimulation disappeared after the treatment of pertussis toxin or by the prepulse depolarization, but was not attributable to the inhibition of cAMP-dependent pathway. The translocation of PKCdelta and epsilon to the T-tubules was observed only after alpha(1A)-adrenoceptor stimulation, but not after alpha(1B)-adrenoceptor stimulation. Immunoprecipitation analysis revealed that alpha(1A)-adrenoceptor was associated with G(q/11), but alpha(1B)-adrenoceptor interacted with one of the pertussis toxin-sensitive G proteins, G(o). These findings demonstrated that the interactions of alpha(1)-adrenoceptor subtypes with different G proteins elicit the formation of separate signaling cascades, which produce the opposite effects on I(Ca). The coupling of alpha(1A)-adrenoceptor with G(q/11)-PLC-PKC-CaMKII pathway potentiates I(Ca). In contrast, alpha(1B)-adrenoceptor interacts with G(o), of which the betagamma-complex might directly inhibit the channel activity at T-tubules.
我们研究了α1 -肾上腺素能受体亚型特异性刺激对L型Ca2+电流(I(Ca))的影响,并阐明了在离体大鼠心室肌细胞中调节L型Ca2+通道的亚型特异性细胞内机制。我们证实了α1A -和α1B -肾上腺素能受体亚型在横管(T管)处的蛋白表达,并发现非亚型选择性激动剂去氧肾上腺素同时刺激这两种受体亚型时,对I(Ca)呈现出两种相反的作用(短暂降低后持续升高)。然而,选择性α1A -肾上腺素能受体刺激(≥0.1 μmol/L A61603)仅增强I(Ca),而选择性α1B -肾上腺素能受体刺激(10 μmol/L去氧肾上腺素与2 μmol/L WB4101)仅降低I(Ca)。α1A -肾上腺素能受体刺激产生的正向作用可被磷脂酶C(PLC)、蛋白激酶C(PKC)或Ca2+/钙调蛋白依赖性蛋白激酶II(CaMKII)的抑制所阻断。α1B -肾上腺素能受体刺激产生的负向作用在百日咳毒素处理或预脉冲去极化后消失,但不归因于cAMP依赖性途径的抑制。仅在α1A -肾上腺素能受体刺激后观察到PKCδ和ε向T管的转位,而在α1B -肾上腺素能受体刺激后未观察到。免疫沉淀分析显示,α1A -肾上腺素能受体与G(q/11)相关联,但α1B -肾上腺素能受体与一种百日咳毒素敏感的G蛋白G(o)相互作用。这些发现表明,α1 -肾上腺素能受体亚型与不同G蛋白的相互作用引发了独立信号级联的形成,对I(Ca)产生相反的作用。α1A -肾上腺素能受体与G(q/11)-PLC-PKC-CaMKII途径的偶联增强I(Ca)。相反,α1B -肾上腺素能受体与G(o)相互作用,其βγ复合物可能直接抑制T管处的通道活性。