Suppr超能文献

哺乳动物产热的中枢控制。

Central control of thermogenesis in mammals.

作者信息

Morrison Shaun F, Nakamura Kazuhiro, Madden Christopher J

机构信息

Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.

出版信息

Exp Physiol. 2008 Jul;93(7):773-97. doi: 10.1113/expphysiol.2007.041848. Epub 2008 May 9.

Abstract

Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E(2), to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis.

摘要

产热,即热能的产生,是哺乳动物和鸟类在环境低温挑战期间维持体温的稳态机制的重要组成部分,并且在感染引起的发热反应中体温升高过程中起关键作用。神经调节的代谢产热的主要来源是棕色脂肪组织中的线粒体氧化、心率增加以及骨骼肌颤抖。中枢神经系统中的平行网络对这些组织中的产热进行调节,这些网络对来自皮肤和核心体温感受器的前馈传入信号以及来自脑热敏神经元的反馈信号作出反应,以激活适当的交感神经和躯体传出神经。本综述总结了导致建立环境寒冷刺激产热的前馈反射通路模型的研究,并讨论了致热介质前列腺素E(2)对该体温调节网络的影响,以升高体温。来自皮肤热感受器的冷觉传入回路通过脊髓背角的二级热感觉神经元上行,以激活外侧臂旁核中的神经元,这些神经元驱动视前区中的GABA能中间神经元,以抑制视前区中对温暖敏感的抑制性输出神经元。由此对视前区背内侧下丘脑促进产热的神经元以及可能对延髓头端腹内侧包括中缝苍白核的交感神经和躯体运动前神经元的去抑制,激活对脊髓交感神经和躯体运动回路的兴奋性输入,以驱动产热。

相似文献

1
Central control of thermogenesis in mammals.
Exp Physiol. 2008 Jul;93(7):773-97. doi: 10.1113/expphysiol.2007.041848. Epub 2008 May 9.
2
Central control of brown adipose tissue thermogenesis.
Front Endocrinol (Lausanne). 2012 Jan 24;3(5). doi: 10.3389/fendo.2012.00005.
3
Central circuitries for body temperature regulation and fever.
Am J Physiol Regul Integr Comp Physiol. 2011 Nov;301(5):R1207-28. doi: 10.1152/ajpregu.00109.2011. Epub 2011 Sep 7.
4
Central neural control of thermoregulation and brown adipose tissue.
Auton Neurosci. 2016 Apr;196:14-24. doi: 10.1016/j.autneu.2016.02.010. Epub 2016 Feb 23.
5
Central neural pathways for thermoregulation.
Front Biosci (Landmark Ed). 2011 Jan 1;16(1):74-104. doi: 10.2741/3677.
7
Central efferent pathways for cold-defensive and febrile shivering.
J Physiol. 2011 Jul 15;589(Pt 14):3641-58. doi: 10.1113/jphysiol.2011.210047. Epub 2011 May 24.
8
Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering.
Handb Clin Neurol. 2018;156:281-303. doi: 10.1016/B978-0-444-63912-7.00017-5.
9
Afferent pathways for autonomic and shivering thermoeffectors.
Handb Clin Neurol. 2018;156:263-279. doi: 10.1016/B978-0-444-63912-7.00016-3.

引用本文的文献

3
Sex differences in metabolic regulation by Gi/o-coupled receptor modulation of exocytosis.
Front Pharmacol. 2025 Mar 19;16:1544456. doi: 10.3389/fphar.2025.1544456. eCollection 2025.
8
Neural substrates underlying rhythmic coupling of female reproductive and thermoregulatory circuits.
Front Physiol. 2023 Sep 11;14:1254287. doi: 10.3389/fphys.2023.1254287. eCollection 2023.
9
Natural product P57 induces hypothermia through targeting pyridoxal kinase.
Nat Commun. 2023 Sep 26;14(1):5984. doi: 10.1038/s41467-023-41435-y.
10
Leptin signaling and leptin resistance.
Med Rev (2021). 2022 Aug 9;2(4):363-384. doi: 10.1515/mr-2022-0017. eCollection 2022 Aug.

本文引用的文献

1
Preoptic mechanism for cold-defensive responses to skin cooling.
J Physiol. 2008 May 15;586(10):2611-20. doi: 10.1113/jphysiol.2008.152686. Epub 2008 Apr 3.
2
Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons.
J Neurosci. 2008 Mar 5;28(10):2495-505. doi: 10.1523/JNEUROSCI.4729-07.2008.
3
Contraction coupling efficiency of human first dorsal interosseous muscle.
J Physiol. 2008 Apr 1;586(7):1993-2002. doi: 10.1113/jphysiol.2007.146829. Epub 2008 Jan 31.
4
Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling.
Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1294-303. doi: 10.1152/ajpregu.00709.2007. Epub 2008 Jan 30.
6
Activation of 5-HT1A receptors in medullary raphé disrupts sleep and decreases shivering during cooling in the conscious piglet.
Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R884-94. doi: 10.1152/ajpregu.00655.2007. Epub 2007 Dec 19.
7
A thermosensory pathway that controls body temperature.
Nat Neurosci. 2008 Jan;11(1):62-71. doi: 10.1038/nn2027. Epub 2007 Dec 16.
9
Central regulation of sodium appetite.
Exp Physiol. 2008 Feb;93(2):177-209. doi: 10.1113/expphysiol.2007.039891. Epub 2007 Nov 2.
10
Thermogenesis activated by central melanocortin signaling is dependent on neurons in the rostral raphe pallidus (rRPa) area.
Brain Res. 2007 Nov 7;1179:61-9. doi: 10.1016/j.brainres.2007.04.006. Epub 2007 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验