The present study presents the activity profiles of cholinephosphotransferase, lysolecithin:lysolecithin acyltransferase and lysolecithin acyltransferase at different stages of development of the mouse lung. 2. The specific activity of cholinephosphotransferase, a key enzyme in the de novo synthesis of phosphatidylcholine, increases during the later stages of fetal development until it reaches a maximal value at a gestational age of 17 days, i.e. 2 days before term. Thereafter, the activity of the enzyme declines again until around term. 2. The specific activity of lysolecithin:lysolecithin acyltransferase which catalyzes the transesterification between two molecules of 1-acyl-sn-glycero-3-phosphocholine, appears to be much lower than that of cholinephosphotransferase at gestational ages below 18 days. However, around day 18, the specific activity of lysolecithin:lysolecithin acyltransferase increases dramatically until it almost equals the maximal activity of cholinephosphotransferase measured on day 17. 4. The specific activity of lysolecithin acyltransferase, which catalyzes the direct acylation of 1-acyl-sn-glycero-3-phosphocholine, does not change significantly during the prenatal development and is lower than that of either lysolecithin:lysolecithin acyltransferase or cholinephosphotransferase at all stages of development. 5. These results are discussed in view of the possible role of these enzymes in the biosynthesis of pulmonary 1,2-dipalmitoyl-sn-glycero-3-phosphocholine.