Handzlik Jadwiga, Maciag Dorota, Kubacka Monika, Mogilski Szczepan, Filipek Barbara, Stadnicka Katarzyna, Kieć-Kononowicz Katarzyna
Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
Bioorg Med Chem. 2008 Jun 1;16(11):5982-98. doi: 10.1016/j.bmc.2008.04.058. Epub 2008 Apr 26.
In the search for new antiarrhythmic agents, some active 2-methoxyphenylpiperazine derivatives of phenytoin were obtained as a chemical modification of compound AZ-99 (3-ethyl-1-[2-hydroxy-3-(4-phenylpiperazin-1-yl)-propyl]-2,4-dioxo-5,5-diphenylimidazolidine). These compounds possessed structural properties similar to those of alpha(1)-adrenoceptor antagonists. In the present study, the affinities of the 2-methoxyphenylpiperazine derivatives (1a-3a) for alpha(1)- and alpha(2)-adrenoceptors were evaluated using radioligand ([(3)H]prazosin, [(3)H]clonidine) binding assays. In the next step, a new series of phenylpiperazine derivatives of phenytoin (4a-16a) containing 2-methoxyphenyl-, 2-ethoxyphenyl-, 2-pyridyl- or 2-furoylpiperazine moiety, as well as, various ester or alkyl substituents at 3-position of hydantoin ring were synthesized. The newly synthesized compounds were tested for their affinity to alpha(1)- and alpha(2)-adrenoceptors. They have shown affinities for alpha(1)-adrenoceptors at nanomolar to submicromolar range. Some compounds were moderately selective ligands of alpha(1)-adrenoceptors. Selected compounds (3a-5a, 7a, 13a, 14a) were also evaluated for their alpha(1)-adrenoceptor antagonistic properties in functional bioassays. A SAR study indicated that the most active compounds contain 2-alkoxyphenylpiperazine moieties and methyl or 2-methylpropionate substituent at 3-N position in hydantoin. The exchange of 2-alkoxyphenyl moiety into 2-furoyl or 2-pyridyl group significantly decreased affinities for alpha(1)-adrenoceptors. Molecular modelling results obtained using conformational analysis CONFLEX and PM5 method for geometry optimization, allowed for comparison of the spatial properties of tested compounds with pharmacophore model created by Barbaro et al. for the ideal alpha(1)-adrenoceptor antagonist.
在寻找新型抗心律失常药物的过程中,通过对化合物AZ-99(3-乙基-1-[2-羟基-3-(4-苯基哌嗪-1-基)-丙基]-2,4-二氧代-5,5-二苯基咪唑烷)进行化学修饰,获得了一些苯妥英的活性2-甲氧基苯基哌嗪衍生物。这些化合物具有与α(1)-肾上腺素能受体拮抗剂相似的结构特性。在本研究中,使用放射性配体([³H]哌唑嗪、[³H]可乐定)结合试验评估了2-甲氧基苯基哌嗪衍生物(1a - 3a)对α(1)-和α(2)-肾上腺素能受体的亲和力。下一步,合成了一系列新的苯妥英苯基哌嗪衍生物(4a - 16a),它们含有2-甲氧基苯基、2-乙氧基苯基、2-吡啶基或2-呋喃甲酰基哌嗪部分,并且在乙内酰脲环的3-位带有各种酯或烷基取代基。对新合成的化合物进行了它们对α(1)-和α(2)-肾上腺素能受体亲和力的测试。它们对α(1)-肾上腺素能受体的亲和力在纳摩尔至亚微摩尔范围内。一些化合物是α(1)-肾上腺素能受体的中度选择性配体。还在功能生物测定中评估了选定的化合物(3a - 5a、7a、13a、14a)的α(1)-肾上腺素能受体拮抗特性。一项构效关系研究表明,活性最高的化合物含有2-烷氧基苯基哌嗪部分以及乙内酰脲中3-N位的甲基或2-甲基丙酸酯取代基。将2-烷氧基苯基部分换成2-呋喃甲酰基或2-吡啶基会显著降低对α(1)-肾上腺素能受体的亲和力。使用构象分析CONFLEX和用于几何优化的PM5方法获得的分子建模结果,使得能够将测试化合物的空间特性与Barbaro等人创建的理想α(1)-肾上腺素能受体拮抗剂的药效团模型进行比较。