Luo Lusong, Carson Jeffrey D, Molnar Kathleen S, Tuske Steven J, Coales Stephen J, Hamuro Yoshitomo, Sung Chiu-mei, Sudakin Valery, Auger Kurt R, Dhanak Dashyant, Jackson Jeffrey R, Huang Pearl S, Tummino Peter J, Copeland Robert A
Department of Enzymology and Mechanistic Pharmacology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA.
J Am Chem Soc. 2008 Jun 18;130(24):7584-91. doi: 10.1021/ja710889h. Epub 2008 May 21.
Human kinesin spindle protein (KSP)/hsEg5, a member of the kinesin-5 family, is essential for mitotic spindle assembly in dividing human cells and is required for cell cycle progression through mitosis. Inhibition of the ATPase activity of KSP leads to cell cycle arrest during mitosis and subsequent cell death. Ispinesib (SB-715992), a potent and selective inhibitor of KSP, is currently in phase II clinical trials for the treatment of multiple tumor types. Mutations that attenuate Ispinesib binding to KSP in vitro have been identified, highlighting the need for inhibitors that target different binding sites and inhibit KSP activity by novel mechanisms. We report here a small-molecule modulator, KSPA-1, that activates KSP-catalyzed ATP hydrolysis in the absence of microtubules yet inhibits microtubule-stimulated ATP hydrolysis by KSP. KSPA-1 inhibits cell proliferation and induces monopolar-spindle formation in tumor cells. Results from kinetic analyses, microtubule (MT) binding competition assays, and hydrogen/deuterium-exchange studies show that KSPA-1 does not compete directly for microtubule binding. Rather, this compound acts by driving a conformational change in the KSP motor domain and disrupts productive ATP turnover stimulated by MT. These findings provide a novel mechanism for targeting KSP and perhaps other mitotic kinesins.
人驱动蛋白纺锤体蛋白(KSP)/hsEg5是驱动蛋白-5家族的成员,对于人类分裂细胞中的有丝分裂纺锤体组装至关重要,并且是细胞周期通过有丝分裂进行所必需的。抑制KSP的ATP酶活性会导致有丝分裂期间细胞周期停滞以及随后的细胞死亡。Ispinesib(SB-715992)是一种有效的KSP选择性抑制剂,目前正处于治疗多种肿瘤类型的II期临床试验中。已鉴定出在体外减弱Ispinesib与KSP结合的突变,这突出表明需要靶向不同结合位点并通过新机制抑制KSP活性的抑制剂。我们在此报告一种小分子调节剂KSPA-1,它在没有微管的情况下激活KSP催化的ATP水解,但抑制微管刺激的KSP的ATP水解。KSPA-1抑制肿瘤细胞的增殖并诱导单极纺锤体形成。动力学分析、微管(MT)结合竞争试验和氢/氘交换研究的结果表明,KSPA-1不直接竞争微管结合。相反,该化合物通过驱动KSP运动结构域的构象变化起作用,并破坏MT刺激的有效的ATP周转。这些发现为靶向KSP以及可能的其他有丝分裂驱动蛋白提供了一种新机制。