Farrington C Paddy, Whitaker Heather J, Hocine Mounia N
Department of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA, UK.
Biostatistics. 2009 Jan;10(1):3-16. doi: 10.1093/biostatistics/kxn013. Epub 2008 May 21.
A new method is developed for analyzing case series data in situations where occurrence of the event censors, curtails, or otherwise affects post-event exposures. Unbiased estimating equations derived from the self-controlled case series model are adapted to allow for exposures whose occurrence or observation is influenced by the event. The method applies to transient point exposures and rare nonrecurrent events. Asymptotic efficiency is studied in some special cases. A computational scheme based on a pseudo-likelihood is proposed to make the computations feasible in complex models. Simulations, a validation study, and 2 applications are described.
一种新方法被开发出来,用于在事件的发生会审查、缩短或以其他方式影响事件后暴露情况的情形下分析病例系列数据。源自自控病例系列模型的无偏估计方程经过调整,以考虑其发生或观察受到事件影响的暴露情况。该方法适用于短暂的时点暴露和罕见的非复发性事件。在一些特殊情况下研究了渐近效率。提出了一种基于伪似然的计算方案,以使复杂模型中的计算可行。描述了模拟、验证研究和两个应用实例。