Suppr超能文献

一种用于理解微阵列数据双聚类结果的可视化分析方法。

A visual analytics approach for understanding biclustering results from microarray data.

作者信息

Santamaría Rodrigo, Therón Roberto, Quintales Luis

机构信息

Departamento de Informática y Automática, Universidad de Salamanca, Pz, de Los Caídos S/N, 37007 Salamanca, Spain.

出版信息

BMC Bioinformatics. 2008 May 27;9:247. doi: 10.1186/1471-2105-9-247.

Abstract

BACKGROUND

Microarray analysis is an important area of bioinformatics. In the last few years, biclustering has become one of the most popular methods for classifying data from microarrays. Although biclustering can be used in any kind of classification problem, nowadays it is mostly used for microarray data classification. A large number of biclustering algorithms have been developed over the years, however little effort has been devoted to the representation of the results.

RESULTS

We present an interactive framework that helps to infer differences or similarities between biclustering results, to unravel trends and to highlight robust groupings of genes and conditions. These linked representations of biclusters can complement biological analysis and reduce the time spent by specialists on interpreting the results. Within the framework, besides other standard representations, a visualization technique is presented which is based on a force-directed graph where biclusters are represented as flexible overlapped groups of genes and conditions. This microarray analysis framework (BicOverlapper), is available at http://vis.usal.es/bicoverlapper

CONCLUSION

The main visualization technique, tested with different biclustering results on a real dataset, allows researchers to extract interesting features of the biclustering results, especially the highlighting of overlapping zones that usually represent robust groups of genes and/or conditions. The visual analytics methodology will permit biology experts to study biclustering results without inspecting an overwhelming number of biclusters individually.

摘要

背景

微阵列分析是生物信息学的一个重要领域。在过去几年中,双聚类已成为对微阵列数据进行分类的最流行方法之一。尽管双聚类可用于任何类型的分类问题,但如今它主要用于微阵列数据分类。多年来已开发出大量双聚类算法,然而在结果表示方面投入的精力却很少。

结果

我们提出了一个交互式框架,该框架有助于推断双聚类结果之间的差异或相似性,揭示趋势并突出基因和条件的稳健分组。这些双聚类的关联表示可以补充生物学分析,并减少专家解释结果所花费的时间。在该框架内,除了其他标准表示外,还提出了一种基于力导向图的可视化技术,其中双聚类表示为基因和条件的灵活重叠组。这个微阵列分析框架(BicOverlapper)可在http://vis.usal.es/bicoverlapper获取。

结论

主要的可视化技术在真实数据集上用不同的双聚类结果进行了测试,使研究人员能够提取双聚类结果的有趣特征,特别是突出通常代表稳健基因和/或条件组的重叠区域。视觉分析方法将使生物学专家无需逐个检查大量双聚类就能研究双聚类结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b01f/2416653/19a9006c8abc/1471-2105-9-247-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验