Lee ChangWoo, Bhatt Sumantha, Shukla Anita, Desnoyer Russell W, Yadav Satya P, Kim Mijin, Jang Sei-Heon, Karnik Sadashiva S
Department of Molecular Cardiology and Molecular Biotechnology Core, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
J Biol Chem. 2008 Aug 1;283(31):21612-20. doi: 10.1074/jbc.M803062200. Epub 2008 May 27.
The discovery of beta-arrestin-related approximately 46-kDa polypeptide in transfected cells and mouse hearts led us to examine angiotensin II type 1 receptor (AT(1)R)-dependent proteolytic cleavage of beta-arrestin(s). Receptor-ligand induced proteolysis of beta-arrestin(s) is novel, especially in the endocrine system, since proteolytic and/or splice variants of nonvisual arrestins are unknown. We used a strategy to retrieve AT(1)R-engaged isoforms of beta-arrestin 1 to confirm direct interaction of fragments with this G protein-coupled receptor and determine cleavage sites. Here we show that the angiotensin II-AT(1)R complex is associated with full-length and approximately 46-kDa beta-arrestin forms. Mass spectrometric analysis of the AT(1)R-associated short form suggested a scissile site located within the Arg(363)-Arg(393) region in the bovine beta-arrestin 1. Edman degradation analysis of a beta-arrestin 1 C-terminal fragment fused to enhanced green fluorescent protein confirmed the major cleavage to be after Phe(388) and a minor cleavage after Asn(375). Rather unexpectedly, the inverse agonist EXP3174-bound AT(1)R generated different fragmentation of bovine beta-arrestin 1, at Pro(276). The angiotensin II-induced cleavage is independent of inositol 1,4,5-trisphosphate- and Ca(2+)-mediated signaling pathways. The proteolysis of beta-arrestin 2 occurs, but the pattern is more complex. Our findings suggest that beta-arrestin cleavage upon AT(1)R stimulation is a part of the unraveling beta-arrestin-mediated G protein-coupled receptor signaling diversity.
在转染细胞和小鼠心脏中发现β - 抑制蛋白相关的约46 kDa多肽后,我们开始研究1型血管紧张素II受体(AT(1)R)依赖性的β - 抑制蛋白的蛋白水解切割。受体 - 配体诱导的β - 抑制蛋白的蛋白水解是新颖的,特别是在内分泌系统中,因为非视觉抑制蛋白的蛋白水解和/或剪接变体尚不清楚。我们采用了一种策略来检索与AT(1)R结合的β - 抑制蛋白1的亚型,以确认片段与这种G蛋白偶联受体的直接相互作用并确定切割位点。在此我们表明,血管紧张素II - AT(1)R复合物与全长和约46 kDa的β - 抑制蛋白形式相关。对与AT(1)R相关的短形式进行质谱分析表明,在牛β - 抑制蛋白1的Arg(363) - Arg(393)区域内存在一个可切割位点。对与增强型绿色荧光蛋白融合的β - 抑制蛋白1 C末端片段进行埃德曼降解分析证实,主要切割发生在Phe(388)之后,次要切割发生在Asn(375)之后。相当出乎意料的是,与反向激动剂EXP3174结合的AT(1)R在Pro(276)处产生了牛β - 抑制蛋白1的不同片段化。血管紧张素II诱导的切割独立于肌醇1,4,5 - 三磷酸和Ca(2+)介导的信号通路。β - 抑制蛋白2的蛋白水解也会发生,但模式更为复杂。我们的研究结果表明,AT(1)R刺激后β - 抑制蛋白的切割是揭示β - 抑制蛋白介导的G蛋白偶联受体信号多样性的一部分。