Suppr超能文献

用于关节软骨缺损的成型、分层、无支架移植物。

Shaped, stratified, scaffold-free grafts for articular cartilage defects.

作者信息

Han EunHee, Bae Won C, Hsieh-Bonassera Nancy D, Wong Van W, Schumacher Barbara L, Görtz Simon, Masuda Koichi, Bugbee William D, Sah Robert L

机构信息

Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, MC 0412, La Jolla, CA 92093-0412, USA.

出版信息

Clin Orthop Relat Res. 2008 Aug;466(8):1912-20. doi: 10.1007/s11999-008-0291-7. Epub 2008 May 28.

Abstract

One goal of treatment for large articular cartilage defects is to restore the anatomic contour of the joint with tissue having a structure similar to native cartilage. Shaped and stratified cartilaginous tissue may be fabricated into a suitable graft to achieve such restoration. We asked if scaffold-free cartilaginous constructs, anatomically shaped and targeting spherically-shaped hips, can be created using a molding technique and if biomimetic stratification of the shaped constructs can be achieved with appropriate superficial and middle/deep zone chondrocyte subpopulations. The shaped, scaffold-free constructs were formed from the alginate-released bovine calf chondrocytes with shaping on one (saucer), two (cup), or neither (disk) surfaces. The saucer and cup constructs had shapes distinguishable quantitatively (radius of curvature of 5.5 +/- 0.1 mm for saucer and 2.8 +/- 0.1 mm for cup) and had no adverse effects on the glycosaminoglycan and collagen contents and their distribution in the constructs as assessed by biochemical assays and histology, respectively. Biomimetic stratification of chondrocyte subpopulations in saucer- and cup-shaped constructs was confirmed and quantified using fluorescence microscopy and image analysis. This shaping method, combined with biomimetic stratification, has the potential to create anatomically contoured large cartilaginous constructs.

摘要

治疗大型关节软骨缺损的一个目标是用结构类似于天然软骨的组织恢复关节的解剖轮廓。可以将成型且分层的软骨组织制作成合适的移植物来实现这种恢复。我们探讨了是否可以使用成型技术创建无支架软骨构建体,使其具有符合解剖学形状并针对球形髋关节,以及是否可以通过适当的表层和中/深层软骨细胞亚群实现成型构建体的仿生分层。成型的无支架构建体由藻酸盐释放的牛犊软骨细胞形成,在一个(碟形)、两个(杯形)或无(盘形)表面进行成型。碟形和杯形构建体的形状在数量上可区分(碟形的曲率半径为5.5±0.1毫米,杯形为2.8±0.1毫米),并且通过生化分析和组织学评估,对构建体中糖胺聚糖和胶原蛋白的含量及其分布均无不良影响。使用荧光显微镜和图像分析对碟形和杯形构建体中的软骨细胞亚群进行了仿生分层的确认和量化。这种成型方法与仿生分层相结合,有可能创建符合解剖学轮廓的大型软骨构建体。

相似文献

1
Shaped, stratified, scaffold-free grafts for articular cartilage defects.
Clin Orthop Relat Res. 2008 Aug;466(8):1912-20. doi: 10.1007/s11999-008-0291-7. Epub 2008 May 28.
2
Tissue engineering of stratified articular cartilage from chondrocyte subpopulations.
Osteoarthritis Cartilage. 2003 Aug;11(8):595-602. doi: 10.1016/s1063-4584(03)00090-6.
3
Anatomically shaped osteochondral constructs for articular cartilage repair.
J Biomech. 2003 Dec;36(12):1853-64. doi: 10.1016/s0021-9290(03)00213-6.
5
Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing.
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4513-22. doi: 10.1073/pnas.1601639113. Epub 2016 Jul 18.
6
Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.
Osteoarthritis Cartilage. 2013 Dec;21(12):1997-2005. doi: 10.1016/j.joca.2013.09.007. Epub 2013 Oct 2.
9
Implantation of scaffold-free engineered cartilage constructs in a rabbit model for chondral resurfacing.
Artif Organs. 2014 Feb;38(2):E21-32. doi: 10.1111/aor.12199. Epub 2013 Oct 29.

引用本文的文献

2
Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds.
Biomaterials. 2016 Jun;91:57-72. doi: 10.1016/j.biomaterials.2016.03.012. Epub 2016 Mar 9.
3
Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages.
Ann Biomed Eng. 2015 Mar;43(3):543-54. doi: 10.1007/s10439-014-1161-y. Epub 2014 Oct 21.
5
Engineering superficial zone features in tissue engineered cartilage.
Biotechnol Bioeng. 2013 May;110(5):1476-86. doi: 10.1002/bit.24799. Epub 2012 Dec 27.
6
Compaction enhances extracellular matrix content and mechanical properties of tissue-engineered cartilaginous constructs.
Tissue Eng Part A. 2012 Jun;18(11-12):1151-60. doi: 10.1089/ten.TEA.2011.0300. Epub 2012 Apr 3.
7
Tissue engineering by molecular disassembly and reassembly: biomimetic retention of mechanically functional aggrecan in hydrogel.
Tissue Eng Part C Methods. 2010 Dec;16(6):1471-9. doi: 10.1089/ten.TEC.2009.0800. Epub 2010 Jun 9.
8
The proteoglycan metabolism of articular cartilage in joint-scale culture.
Tissue Eng Part A. 2010 May;16(5):1717-27. doi: 10.1089/ten.TEA.2009.0663.
9
Shape, loading, and motion in the bioengineering design, fabrication, and testing of personalized synovial joints.
J Biomech. 2010 Jan 5;43(1):156-65. doi: 10.1016/j.jbiomech.2009.09.021. Epub 2009 Oct 7.

本文引用的文献

1
Cartilage reshaping via in vitro mechanical loading.
Tissue Eng. 2007 Dec;13(12):2903-11. doi: 10.1089/ten.2007.0053.
3
Formation of biphasic constructs containing cartilage with a calcified zone interface.
Tissue Eng. 2007 Jan;13(1):167-77. doi: 10.1089/ten.2006.0081.
4
Designing zonal organization into tissue-engineered cartilage.
Tissue Eng. 2007 Feb;13(2):405-14. doi: 10.1089/ten.2006.0068.
6
Tailoring secretion of proteoglycan 4 (PRG4) in tissue-engineered cartilage.
Tissue Eng. 2006 Jun;12(6):1429-39. doi: 10.1089/ten.2006.12.1429.
7
Generation of a scaffold free cartilage-like implant from a small amount of starting material.
J Cell Mol Med. 2006 Apr-Jun;10(2):480-92. doi: 10.1111/j.1582-4934.2006.tb00413.x.
8
Chondrocytes from different zones exhibit characteristic differences in high density culture.
Connect Tissue Res. 2006;47(3):133-40. doi: 10.1080/03008200600685392.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验