Suppr超能文献

通过恢复密度梯度展开并施加严格的李-牛津界来构建广义梯度近似。

Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound.

作者信息

Zhao Yan, Truhlar Donald G

机构信息

Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA.

出版信息

J Chem Phys. 2008 May 14;128(18):184109. doi: 10.1063/1.2912068.

Abstract

Recently, a generalized gradient approximation (GGA) to the density functional, called PBEsol, was optimized (one parameter) against the jellium-surface exchange-correlation energies, and this, in conjunction with changing another parameter to restore the first-principles gradient expansion for exchange, was sufficient to yield accurate lattice constants of solids. Here, we construct a new GGA that has no empirical parameters, that satisfies one more exact constraint than PBEsol, and that performs 20% better for the lattice constants of 18 previously studied solids, although it does not improve on PBEsol for molecular atomization energies (a property that neither functional was designed for). The new GGA is exact through second order, and it is called the second-order generalized gradient approximation (SOGGA). The SOGGA functional also differs from other GGAs in that it enforces a tighter Lieb-Oxford bound. SOGGA and other functionals are compared to a diverse set of lattice constants, bond distances, and energetic quantities for solids and molecules (this includes the first test of the M06-L meta-GGA for solid-state properties). We find that classifying density functionals in terms of the magnitude mu of the second-order coefficient of the density gradient expansion of the exchange functional not only correlates their behavior for predicting lattice constants of solids versus their behavior for predicting small-molecule atomization energies, as pointed out by Perdew and co-workers [Phys. Rev. Lett. 100, 134606 (2008); Perdew ibid. 80, 891 (1998)], but also correlates their behavior for cohesive energies of solids, reaction barriers heights, and nonhydrogenic bond distances in small molecules.

摘要

最近,一种针对密度泛函的广义梯度近似(GGA),称为PBEsol,针对金属表面交换关联能进行了优化(一个参数),并且结合改变另一个参数以恢复交换的第一性原理梯度展开,足以得出固体的精确晶格常数。在此,我们构建了一种新的GGA,它没有经验参数,比PBEsol多满足一个精确约束,并且对于18种先前研究的固体的晶格常数,其表现比PBEsol好20%,尽管在分子原子化能方面(这两种泛函都不是为此性质设计的)它没有比PBEsol有所改进。新的GGA在二阶上是精确的,它被称为二阶广义梯度近似(SOGGA)。SOGGA泛函与其他GGA的不同之处还在于它施加了更严格的Lieb-Oxford约束。将SOGGA和其他泛函与各种固体和分子的晶格常数、键长以及能量量进行了比较(这包括对M06-L元GGA的固态性质首次测试)。我们发现,根据交换泛函的密度梯度展开的二阶系数的大小μ对密度泛函进行分类,不仅可以关联它们预测固体晶格常数的行为与预测小分子原子化能的行为,正如Perdew及其同事所指出的[《物理评论快报》100, 134606 (2008); Perdew同上,80, 891 (1998)],而且还可以关联它们对固体结合能、反应势垒高度以及小分子中非氢原子键长的行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验