Suppr超能文献

基于梯度优化的三维人体运动动态运动规划

Dynamic motion planning of 3D human locomotion using gradient-based optimization.

作者信息

Kim Hyung Joo, Wang Qian, Rahmatalla Salam, Swan Colby C, Arora Jasbir S, Abdel-Malek Karim, Assouline Jose G

机构信息

Center for Computer Aided Design, College of Engineering, The University of Iowa, Iowa City, IA 52242, USA.

出版信息

J Biomech Eng. 2008 Jun;130(3):031002. doi: 10.1115/1.2898730.

Abstract

Since humans can walk with an infinite variety of postures and limb movements, there is no unique solution to the modeling problem to predict human gait motions. Accordingly, we test herein the hypothesis that the redundancy of human walking mechanisms makes solving for human joint profiles and force time histories an indeterminate problem best solved by inverse dynamics and optimization methods. A new optimization-based human-modeling framework is thus described for predicting three-dimensional human gait motions on level and inclined planes. The basic unknowns in the framework are the joint motion time histories of a 25-degree-of-freedom human model and its six global degrees of freedom. The joint motion histories are calculated by minimizing an objective function such as deviation of the trunk from upright posture that relates to the human model's performance. A variety of important constraints are imposed on the optimization problem, including (1) satisfaction of dynamic equilibrium equations by requiring the model's zero moment point (ZMP) to lie within the instantaneous geometrical base of support, (2) foot collision avoidance, (3) limits on ground-foot friction, and (4) vanishing yawing moment. Analytical forms of objective and constraint functions are presented and discussed for the proposed human-modeling framework in which the resulting optimization problems are solved using gradient-based mathematical programming techniques. When the framework is applied to the modeling of bipedal locomotion on level and inclined planes, acyclic human walking motions that are smooth and realistic as opposed to less natural robotic motions are obtained. The aspects of the modeling framework requiring further investigation and refinement, as well as potential applications of the framework in biomechanics, are discussed.

摘要

由于人类能够以无限多种姿势和肢体动作行走,因此预测人类步态运动的建模问题没有唯一解。相应地,我们在此检验这样一个假设,即人类行走机制的冗余性使得求解人类关节轮廓和力随时间的变化成为一个不确定问题,最好通过逆动力学和优化方法来解决。因此,本文描述了一种基于优化的新人体建模框架,用于预测在水平和倾斜平面上的三维人类步态运动。该框架中的基本未知量是一个具有25个自由度的人体模型的关节运动随时间的变化及其六个全局自由度。通过最小化一个目标函数(如与人体模型性能相关的躯干相对于直立姿势的偏差)来计算关节运动随时间的变化。对优化问题施加了各种重要约束,包括:(1)通过要求模型的零力矩点(ZMP)位于瞬时几何支撑基内来满足动态平衡方程;(2)避免脚部碰撞;(3)限制地面与脚部之间的摩擦力;(4)消除偏航力矩。给出并讨论了所提出的人体建模框架的目标函数和约束函数的解析形式,其中使用基于梯度的数学规划技术来解决由此产生的优化问题。当该框架应用于水平和倾斜平面上的双足运动建模时,可获得与不太自然的机器人运动相比更平滑、更逼真的非循环人类行走运动。讨论了该建模框架需要进一步研究和完善的方面,以及该框架在生物力学中的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验