Suppr超能文献

树枝状大分子模板法合成负载在介孔二氧化硅上的一纳米铑和铂颗粒:对乙烯和吡咯加氢的催化活性。

Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation.

作者信息

Huang Wenyu, Kuhn John N, Tsung Chia-Kuang, Zhang Yawen, Habas Susan E, Yang Peidong, Somorjai Gabor A

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, USA.

出版信息

Nano Lett. 2008 Jul;8(7):2027-34. doi: 10.1021/nl801325m. Epub 2008 Jun 11.

Abstract

Monodisperse rhodium (Rh) and platinum (Pt) nanoparticles as small as approximately 1 nm were synthesized within a fourth generation polyaminoamide (PAMAM) dendrimer, a hyperbranched polymer, in aqueous solution and immobilized by depositing onto a high-surface-area SBA-15 mesoporous support. X-ray photoelectron spectroscopy indicated that the as-synthesized Rh and Pt nanoparticles were mostly oxidized. Catalytic activity of the SBA-15 supported Rh and Pt nanoparticles was studied with ethylene hydrogenation at 273 and 293 K in 10 torr of ethylene and 100 torr of H 2 after reduction (76 torr of H 2 mixed with 690 torr of He) at different temperatures. Catalysts were active without removing the dendrimer capping but reached their highest activity after hydrogen reduction at a moderate temperature (423 K). When treated at a higher temperature (473, 573, and 673 K) in hydrogen, catalytic activity decreased. By using the same treatment that led to maximum ethylene hydrogenation activity, catalytic activity was also evaluated for pyrrole hydrogenation.

摘要

在水溶液中,在第四代聚氨基酰胺(PAMAM)树枝状大分子(一种超支化聚合物)内合成了尺寸小至约1 nm的单分散铑(Rh)和铂(Pt)纳米颗粒,并通过沉积在高比表面积的SBA-15介孔载体上进行固定。X射线光电子能谱表明,合成后的Rh和Pt纳米颗粒大多被氧化。在不同温度下还原(76 torr的H₂与690 torr的He混合)后,在10 torr的乙烯和100 torr的H₂中,于273和293 K下用乙烯加氢研究了SBA-15负载的Rh和Pt纳米颗粒的催化活性。催化剂在不去除树枝状大分子封端的情况下具有活性,但在中等温度(423 K)下进行氢还原后达到最高活性。在氢气中于较高温度(473、573和673 K)处理时,催化活性降低。通过使用导致乙烯加氢活性最高的相同处理方法,还对吡咯加氢的催化活性进行了评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验