Burgos-Ramos E, Puebla-Jiménez L, Arilla-Ferreiro E
Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.
Neuroscience. 2008 Jul 17;154(4):1458-66. doi: 10.1016/j.neuroscience.2008.04.036. Epub 2008 Apr 29.
Minocycline is a semi-synthetic second-generation tetracycline known to improve cognition in amyloid precursor protein transgenic mice. Whether it can protect the somatostatin (SRIF) receptor-effector system, also involved in learning and memory, from alterations induced by chronic i.c.v. infusion of beta-amyloid peptide (Abeta)(25-35) is presently unknown. Hence, in the present study, we tested the effects of minocycline on the SRIF signaling pathway in the rat temporal cortex. To this end, male Wistar rats were injected with minocycline (45 mg/kg body weight) i.p. twice on the first day of treatment. On the following day and during 14 days, Abeta(25-35) was administered i.c.v. via an osmotic minipump connected to a cannula implanted in the left lateral ventricle (300 pmol/day). Minocycline (22.5 mg/kg, i.p.) was injected once again the last 2 days of the Abeta(25-35) infusion. The animals were killed by decapitation 24 h after the last drug injection. Our results show that minocycline prevents the decrease in SRIF receptor density and somatostatin receptor (sst) 2 expression and the attenuated capacity of SRIF to inhibit adenylyl cyclase (AC) activity, alterations present in the temporal cortex of Abeta(25-35)-treated rats. Furthermore, minocycline blocks the Abeta(25-35)-induced decrease in phosphorylated cyclic AMP (cAMP) response element binding protein (p-CREB) content and G-protein-coupled receptor kinase 2 (GRK) protein expression in this brain area. Altogether, the present data demonstrate that minocycline in vivo provides protection against Abeta-induced impairment of the SRIF signal transduction pathway in the rat temporal cortex and suggest that it may have a potential as a therapeutic agent in human Alzheimer's disease, although further studies are warranted.
米诺环素是一种半合成的第二代四环素,已知其可改善淀粉样前体蛋白转基因小鼠的认知能力。目前尚不清楚它是否能保护同样参与学习和记忆的生长抑素(SRIF)受体 - 效应系统免受慢性脑室内注射β - 淀粉样肽(Abeta)(25 - 35)所诱导的改变。因此,在本研究中,我们测试了米诺环素对大鼠颞叶皮质中SRIF信号通路的影响。为此,在治疗的第一天,雄性Wistar大鼠腹腔注射米诺环素(45毫克/千克体重),每日两次。在接下来的一天及随后的14天内,通过连接植入左侧脑室的套管的渗透微型泵脑室内给予Abeta(25 - 35)(300皮摩尔/天)。在Abeta(25 - 35)输注的最后2天再次腹腔注射米诺环素(22.5毫克/千克)。在最后一次注射药物24小时后,通过断头处死动物。我们的结果表明,米诺环素可防止SRIF受体密度和生长抑素受体(sst)2表达的降低,以及SRIF抑制腺苷酸环化酶(AC)活性能力的减弱,这些改变存在于接受Abeta(25 - 35)治疗的大鼠颞叶皮质中。此外,米诺环素可阻断Abeta(25 - 35)诱导的该脑区磷酸化环磷酸腺苷(cAMP)反应元件结合蛋白(p - CREB)含量和G蛋白偶联受体激酶2(GRK)蛋白表达的降低。总之,目前的数据表明,米诺环素在体内可保护大鼠颞叶皮质免受Abeta诱导的SRIF信号转导通路损伤,并表明它可能具有作为人类阿尔茨海默病治疗药物的潜力,尽管还需要进一步研究。