Feuz Laurent, Leermakers Frans A M, Textor Marcus, Borisov Oleg
Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.
Langmuir. 2008 Jul 15;24(14):7232-44. doi: 10.1021/la800272v. Epub 2008 Jun 18.
The two-gradient version of the Scheutjens-Fleer self-consistent field (SF-SCF) theory is employed to model the interaction between a molecular bottle brush with a polyelectrolyte backbone and neutral hydrophilic side chains and an oppositely charged surface. Our system mimics graft-copolymers with a cationic main chain (among which poly( L-lysine)- graft-poly(ethylene glycol) (PLL- g-PEG) or poly( L-lysine)- graft-polyoxazoline are well-known examples) interacting with negatively charged (metal oxide) solid surfaces. We aim to analyze the copolymer-surface interaction patterns as a function of the molecular architecture parameters. Two regimes are investigated: First, we compute the effective interaction potential versus the distance from the surface for individual bottle brush macromolecules. Here, depending on the grafting ratio and the degree of polymerization of the side chains, the interplay of electrostatic attractions of the main chain to the surface and the steric repulsion of the grafts results in different patterns in the interaction potential and, therefore, in qualitatively different adsorption behavior. In particular, we demonstrate that, at high side chain grafting density and short grafts, the molecular brushes are strongly adsorbed electrostatically onto negatively charged substrates, whereas, in the opposite case of low grafting ratio and high molecular weight of grafts, the steric repulsion of the side chains from the surface dominates the polymer-surface interaction. At intermediate grafting ratios, the adsorption/depletion scenario depends essentially on the ratio between the electrostatic screening length and the thickness of the molecular bottle brush. We further have analyzed the equilibrium adsorbed amount as a function of the macromolecular architecture. Our results are based on a detailed account of attractive and repulsive (including intermolecular in-plane) interactions, and suggest a nonmonotonic dependence of the adsorbed amount on the grafting ratio, in good agreement with the experimental studies for PLL- g-PEG adsorption onto Nb2O5 surfaces. The results of the theoretical modeling are discussed in the context of the optimization of the PLL-g-PEG molecular design parameters in order to create protein-resistant surfaces.
采用Scheutjens-Fleer自洽场(SF-SCF)理论的双梯度版本,对具有聚电解质主链和中性亲水性侧链的分子瓶刷与带相反电荷表面之间的相互作用进行建模。我们的系统模拟了具有阳离子主链的接枝共聚物(其中聚(L-赖氨酸)-接枝-聚(乙二醇)(PLL-g-PEG)或聚(L-赖氨酸)-接枝-聚恶唑啉是众所周知的例子)与带负电荷的(金属氧化物)固体表面相互作用。我们旨在分析共聚物-表面相互作用模式作为分子结构参数的函数。研究了两种情况:首先,我们计算了单个瓶刷大分子的有效相互作用势与距表面距离的关系。在此,根据侧链的接枝率和聚合度,主链与表面的静电吸引力和接枝的空间排斥力之间的相互作用导致相互作用势出现不同模式,因此吸附行为在定性上也不同。特别是,我们证明,在高侧链接枝密度和短接枝的情况下,分子刷通过静电强烈吸附在带负电荷的底物上,而在接枝率低和接枝高分子量的相反情况下,侧链与表面的空间排斥力主导了聚合物-表面相互作用。在中间接枝率下,吸附/耗尽情况主要取决于静电屏蔽长度与分子瓶刷厚度之间的比率。我们还进一步分析了平衡吸附量作为大分子结构的函数。我们的结果基于对吸引和排斥(包括分子间面内)相互作用的详细描述,并表明吸附量对接枝率的非单调依赖性,这与PLL-g-PEG在Nb2O5表面吸附的实验研究结果高度一致。在优化PLL-g-PEG分子设计参数以创建抗蛋白质表面的背景下,讨论了理论建模的结果。