Suppr超能文献

小鼠酒精偏好的基因组决定因素。

The genomic determinants of alcohol preference in mice.

作者信息

Tabakoff Boris, Saba Laura, Kechris Katherina, Hu Wei, Bhave Sanjiv V, Finn Deborah A, Grahame Nicholas J, Hoffman Paula L

机构信息

Department of Pharmacology, University of Colorado Denver School of Medicine, Mail Stop F-8303, P.O. Box 6511, Aurora, CO 80045-0511, USA.

出版信息

Mamm Genome. 2008 May;19(5):352-65. doi: 10.1007/s00335-008-9115-z. Epub 2008 Jun 19.

Abstract

Searches for the identity of genes that influence the levels of alcohol consumption by humans and other animals have often been driven by presupposition of the importance of particular gene products in determining positively or negatively reinforcing effects of ethanol. We have taken an unbiased approach and performed a meta-analysis across three types of mouse populations to correlate brain gene expression with levels of alcohol intake. Our studies, using filtering procedures based on QTL analysis, produced a list of eight candidate genes with highly heritable expression, which could explain a significant amount of the variance in alcohol preference in mice. Using the Allen Brain Atlas for gene expression, we noted that the candidate genes' expression was localized to the olfactory and limbic areas as well as to the orbitofrontal cortex. Informatics techniques and pathway analysis illustrated the role of the candidate genes in neuronal migration, differentiation, and synaptic remodeling. The importance of olfactory cues, learning and memory formation (Pavlovian conditioning), and cortical executive function, for regulating alcohol intake by animals (including humans), is discussed.

摘要

对影响人类和其他动物酒精摄入量的基因身份的研究,往往是由特定基因产物在决定乙醇的正向或负向强化作用中的重要性这一预设所驱动的。我们采用了一种无偏倚的方法,对三种类型的小鼠群体进行了荟萃分析,以将脑基因表达与酒精摄入量相关联。我们的研究使用基于数量性状基因座(QTL)分析的筛选程序,得出了一份具有高度遗传性表达的八个候选基因列表,这可以解释小鼠酒精偏好中相当一部分的变异。利用艾伦脑图谱进行基因表达分析,我们注意到候选基因的表达定位于嗅觉和边缘区域以及眶额皮质。信息学技术和通路分析阐明了候选基因在神经元迁移、分化和突触重塑中的作用。本文讨论了嗅觉线索、学习和记忆形成(经典条件反射)以及皮质执行功能对调节动物(包括人类)酒精摄入量的重要性。

相似文献

1
The genomic determinants of alcohol preference in mice.
Mamm Genome. 2008 May;19(5):352-65. doi: 10.1007/s00335-008-9115-z. Epub 2008 Jun 19.
2
Genetical genomic determinants of alcohol consumption in rats and humans.
BMC Biol. 2009 Oct 27;7:70. doi: 10.1186/1741-7007-7-70.
4
A systems genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic transmission.
Neuropharmacology. 2011 Jun;60(7-8):1269-80. doi: 10.1016/j.neuropharm.2010.12.019. Epub 2010 Dec 23.
5
Genomic insights into acute alcohol tolerance.
J Pharmacol Exp Ther. 2008 Sep;326(3):792-800. doi: 10.1124/jpet.108.137521. Epub 2008 Jun 11.
6
On the integration of alcohol-related quantitative trait loci and gene expression analyses.
Alcohol Clin Exp Res. 2004 Oct;28(10):1437-48. doi: 10.1097/01.alc.0000139827.86749.da.
8
Quantitative trait locus mapping of acute functional tolerance in the LXS recombinant inbred strains.
Alcohol Clin Exp Res. 2015 Apr;39(4):611-20. doi: 10.1111/acer.12678.
9
Identification of candidate genes for alcohol preference by expression profiling of congenic rat strains.
Alcohol Clin Exp Res. 2007 Jul;31(7):1089-98. doi: 10.1111/j.1530-0277.2007.00397.x. Epub 2007 Apr 19.
10
Genetic Variability in Adenosine Deaminase-Like Contributes to Variation in Alcohol Preference in Mice.
Alcohol Clin Exp Res. 2017 Jul;41(7):1271-1279. doi: 10.1111/acer.13409. Epub 2017 Jun 5.

引用本文的文献

2
Modulation of neuronal excitability by binge alcohol drinking.
Front Mol Neurosci. 2023 Feb 14;16:1098211. doi: 10.3389/fnmol.2023.1098211. eCollection 2023.
5
Development of a tissue augmented Bayesian model for expression quantitative trait loci analysis.
Math Biosci Eng. 2019 Sep 26;17(1):122-143. doi: 10.3934/mbe.2020007.
6
Cross-Species Co-analysis of Prefrontal Cortex Chronic Ethanol Transcriptome Responses in Mice and Monkeys.
Front Mol Neurosci. 2019 Aug 13;12:197. doi: 10.3389/fnmol.2019.00197. eCollection 2019.
7
Scn4b regulates the hypnotic effects of ethanol and other sedative drugs.
Genes Brain Behav. 2019 Jul;18(6):e12562. doi: 10.1111/gbb.12562. Epub 2019 May 2.
8
Predictive modeling of miRNA-mediated predisposition to alcohol-related phenotypes in mouse.
BMC Genomics. 2018 Aug 29;19(1):639. doi: 10.1186/s12864-018-5004-3.
9
Transcriptome analysis of alcohol-treated microglia reveals downregulation of beta amyloid phagocytosis.
J Neuroinflammation. 2018 May 14;15(1):141. doi: 10.1186/s12974-018-1184-7.
10
Altered gene expression in early postnatal monoamine oxidase A knockout mice.
Brain Res. 2017 Aug 15;1669:18-26. doi: 10.1016/j.brainres.2017.05.017. Epub 2017 May 20.

本文引用的文献

1
Voluntary ethanol consumption in 22 inbred mouse strains.
Alcohol. 2008 May;42(3):149-60. doi: 10.1016/j.alcohol.2007.12.006. Epub 2008 Mar 20.
2
Receptors look outward: revealing signals that bring excitation to synapses.
Sci STKE. 2007 Oct 16;2007(408):pe56. doi: 10.1126/stke.4082007pe56.
3
Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15917-22. doi: 10.1073/pnas.0704140104. Epub 2007 Sep 26.
4
Diversity of neural signals mediated by multiple, burst-firing mechanisms in rat olfactory tubercle neurons.
J Neurophysiol. 2007 Nov;98(5):2716-28. doi: 10.1152/jn.00807.2007. Epub 2007 Sep 12.
5
Pentraxins in innate immunity: from C-reactive protein to the long pentraxin PTX3.
J Clin Immunol. 2008 Jan;28(1):1-13. doi: 10.1007/s10875-007-9126-7. Epub 2007 Sep 9.
6
Neurexin 3 polymorphisms are associated with alcohol dependence and altered expression of specific isoforms.
Hum Mol Genet. 2007 Dec 1;16(23):2880-91. doi: 10.1093/hmg/ddm247. Epub 2007 Sep 4.
7
SNPs matter: impact on detection of differential expression.
Nat Methods. 2007 Sep;4(9):679-80. doi: 10.1038/nmeth0907-679.
8
The PhenoGen informatics website: tools for analyses of complex traits.
BMC Genet. 2007 Aug 30;8:59. doi: 10.1186/1471-2156-8-59.
9
Cis sequence effects on gene expression.
BMC Genomics. 2007 Aug 29;8:296. doi: 10.1186/1471-2164-8-296.
10
An olfacto-hippocampal network is dynamically involved in odor-discrimination learning.
J Neurophysiol. 2007 Oct;98(4):2196-205. doi: 10.1152/jn.00524.2007. Epub 2007 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验