Shimamoto Keiko
Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan.
Chem Rec. 2008;8(3):182-99. doi: 10.1002/tcr.20145.
L-glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Termination of glutamate receptor activation and maintenance of low extracellular glutamate concentrations are mainly achieved by glutamate transporters [excitatory amino acid transporters 1-5 (EAAT1-5)] located in nerve endings and surrounding glial cells. Selective and potent inhibitors have long been required to investigate the physiological significance of transporters in the regulation of synaptic transmission and the pathogenesis of neurological diseases. Non-transportable blockers are desirable because, unlike competitive substrates, they do not cause ion flux and heteroexchange. After a series of possible candidate molecules, we synthesized threo-beta-benzyloxyaspartate (TBOA), the first non-transportable blocker for all subtypes of EAATs. In addition, TBOA analogs with a bulky substituent on their benzene ring showed enhanced inhibition of labeled glutamate uptake. Comparing the effects of substrates and non-transportable blockers revealed the physiological roles of EAATs. We also developed a novel binding assay system using a tritium-labeled TBOA analog. In this review, we describe the design and synthesis of these blockers and the functions of the EAATs elucidated with them.
L-谷氨酸是哺乳动物中枢神经系统中的主要兴奋性神经递质。谷氨酸受体激活的终止以及细胞外低谷氨酸浓度的维持主要通过位于神经末梢和周围神经胶质细胞中的谷氨酸转运体[兴奋性氨基酸转运体1 - 5(EAAT1 - 5)]来实现。长期以来,人们一直需要选择性和强效的抑制剂来研究转运体在调节突触传递和神经疾病发病机制中的生理意义。不可转运的阻滞剂是理想的,因为与竞争性底物不同,它们不会引起离子通量和异源交换。在一系列可能的候选分子之后,我们合成了苏式-β-苄氧基天冬氨酸(TBOA),这是第一种针对所有EAAT亚型的不可转运阻滞剂。此外,在其苯环上带有庞大取代基的TBOA类似物对标记的谷氨酸摄取表现出增强的抑制作用。比较底物和不可转运阻滞剂的作用揭示了EAATs的生理作用。我们还开发了一种使用氚标记的TBOA类似物的新型结合测定系统。在这篇综述中,我们描述了这些阻滞剂的设计和合成以及用它们阐明的EAATs的功能。