Moran-Mirabal Jose M, Santhanam Navaneetha, Corgie Stephane C, Craighead Harold G, Walker Larry P
Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA.
Biotechnol Bioeng. 2008 Dec 15;101(6):1129-41. doi: 10.1002/bit.21990.
Cellulases, enzymes capable of depolymerizing cellulose polymers into fermentable sugars, are essential components in the production of bioethanol from lignocellulosic materials. Given the importance of these enzymes to the evolving biofuel industry considerable research effort is focused on understanding the interaction between cellulases and cellulose fibrils. This manuscript presents a method that addresses challenges that must be overcome in order to study such interactions through high-resolution fluorescence microscopy. First, it is shown that cellulose can be immobilized on solid substrates through a polymer lift-off technique. The immobilized cellulose aggregates present characteristic morphologies influenced by the patterned feature size used to immobilize it. Thus, through a variety of pattern sizes, cellulose can be immobilized in the form of cellulose particles, cellulose mats or individual cellulose fibrils. Second, it is shown that both cellulose and Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A can be fluorescently tagged and that the labeling does not inhibit the capability of these cellulases to depolymerize cellulose. The combination of the immobilization technique together with fluorescence labeling yields a system that can be used to study cellulose-cellulase interactions with spatial and temporal resolution not available through more conventional techniques which measure ensemble averages. It is shown that with such a system, the kinetics of cellulase binding onto cellulose fibrils and mats can be followed through sequences of fluorescence images. The intensity from the images can then be used to reconstruct binding curves for the cellulases studied. It was found that the complexity of cellulose morphology has a large impact on the binding curve characteristics, with binding curves for individual cellulose fibrils closely following a binding saturation model and binding curves for cellulose mats and particles deviating from it. The behavior observed is interpreted as the effect pore and interstice penetration play in cellulase binding to the accessible surface of cellulose aggregates. These results validate our method for immobilizing nanoscale cellulose fibrils and fibril aggregates on solid supports and lay the foundation for future studies on cellulase-cellulose interactions.
纤维素酶能够将纤维素聚合物解聚为可发酵糖,是利用木质纤维素材料生产生物乙醇过程中的关键成分。鉴于这些酶对不断发展的生物燃料产业的重要性,大量研究工作聚焦于了解纤维素酶与纤维素原纤维之间的相互作用。本论文介绍了一种方法,该方法可应对通过高分辨率荧光显微镜研究此类相互作用时必须克服的挑战。首先,研究表明纤维素可通过聚合物剥离技术固定在固体基质上。固定化的纤维素聚集体呈现出受用于固定它的图案特征尺寸影响的特征形态。因此,通过多种图案尺寸,纤维素可以以纤维素颗粒、纤维素垫或单个纤维素原纤维的形式固定。其次,研究表明纤维素和嗜热栖热放线菌纤维素酶Cel5A、Cel6B和Cel9A都可以进行荧光标记,并且这种标记不会抑制这些纤维素酶解聚纤维素的能力。固定化技术与荧光标记相结合,产生了一个系统,该系统可用于以传统技术无法实现的空间和时间分辨率研究纤维素 - 纤维素酶相互作用,传统技术只能测量总体平均值。研究表明,使用这样的系统,可以通过荧光图像序列跟踪纤维素酶与纤维素原纤维和垫子结合的动力学。然后,图像的强度可用于重建所研究纤维素酶的结合曲线。研究发现,纤维素形态的复杂性对结合曲线特征有很大影响,单个纤维素原纤维的结合曲线紧密遵循结合饱和模型,而纤维素垫和颗粒的结合曲线则与之偏离。观察到的行为被解释为孔隙和间隙渗透在纤维素酶与纤维素聚集体可及表面结合中所起的作用。这些结果验证了我们将纳米级纤维素原纤维和原纤维聚集体固定在固体支持物上的方法,并为未来纤维素酶 - 纤维素相互作用的研究奠定了基础。