Suppr超能文献

用于快速准确的磷酸化蛋白质组分析的磷酸化特异性串联质谱评分

Phosphorylation-specific MS/MS scoring for rapid and accurate phosphoproteome analysis.

作者信息

Payne Samuel H, Yau Margaret, Smolka Marcus B, Tanner Stephen, Zhou Huilin, Bafna Vineet

机构信息

Bioinformatics Program, University of California San Diego, Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA.

出版信息

J Proteome Res. 2008 Aug;7(8):3373-81. doi: 10.1021/pr800129m. Epub 2008 Jun 19.

Abstract

The promise of mass spectrometry as a tool for probing signal-transduction is predicated on reliable identification of post-translational modifications. Phosphorylations are key mediators of cellular signaling, yet are hard to detect, partly because of unusual fragmentation patterns of phosphopeptides. In addition to being accurate, MS/MS identification software must be robust and efficient to deal with increasingly large spectral data sets. Here, we present a new scoring function for the Inspect software for phosphorylated peptide tandem mass spectra for ion-trap instruments, without the need for manual validation. The scoring function was modeled by learning fragmentation patterns from 7677 validated phosphopeptide spectra. We compare our algorithm against SEQUEST and X!Tandem on testing and training data sets. At a 1% false positive rate, Inspect identified the greatest total number of phosphorylated spectra, 13% more than SEQUEST and 39% more than X!Tandem. Spectra identified by Inspect tended to score better in several spectral quality measures. Furthermore, Inspect runs much faster than either SEQUEST or X!Tandem, making desktop phosphoproteomics feasible. Finally, we used our new models to reanalyze a corpus of 423,000 LTQ spectra acquired for a phosphoproteome analysis of Saccharomyces cerevisiae DNA damage and repair pathways and discovered 43% more phosphopeptides than the previous study.

摘要

质谱作为一种探测信号转导的工具,其前景取决于能否可靠地识别翻译后修饰。磷酸化是细胞信号传导的关键介质,但难以检测,部分原因是磷酸化肽段的碎片化模式异常。除了准确之外,串联质谱(MS/MS)识别软件还必须强大且高效,以处理日益庞大的光谱数据集。在此,我们为离子阱仪器的磷酸化肽段串联质谱的Inspect软件提出了一种新打分函数,无需人工验证。该打分函数通过从7677个经验证的磷酸化肽段光谱中学习碎片化模式进行建模。我们在测试和训练数据集上,将我们的算法与SEQUEST和X!Tandem进行了比较。在1%的假阳性率下,Inspect识别出的磷酸化光谱总数最多,比SEQUEST多13%,比X!Tandem多39%。Inspect识别出的光谱在几种光谱质量指标上往往得分更高。此外,Inspect的运行速度比SEQUEST或X!Tandem快得多,使得桌面磷酸化蛋白质组学成为可能。最后,我们使用新模型重新分析了为酿酒酵母DNA损伤和修复途径的磷酸化蛋白质组分析获取的423,000个线性离子阱(LTQ)光谱数据集,发现的磷酸化肽段比之前的研究多43%。

相似文献

1
Phosphorylation-specific MS/MS scoring for rapid and accurate phosphoproteome analysis.
J Proteome Res. 2008 Aug;7(8):3373-81. doi: 10.1021/pr800129m. Epub 2008 Jun 19.
3
Label-Free Quantitative Phosphoproteomics in the Fission Yeast Schizosaccharomyces pombe.
Methods Mol Biol. 2025;2862:297-307. doi: 10.1007/978-1-0716-4168-2_21.
4
A multidimensional chromatography technology for in-depth phosphoproteome analysis.
Mol Cell Proteomics. 2008 Jul;7(7):1389-96. doi: 10.1074/mcp.M700468-MCP200. Epub 2008 Apr 11.
8
InsPecT: identification of posttranslationally modified peptides from tandem mass spectra.
Anal Chem. 2005 Jul 15;77(14):4626-39. doi: 10.1021/ac050102d.
9
Rapid Shotgun Phosphoproteomics Analysis.
Methods Mol Biol. 2021;2259:259-268. doi: 10.1007/978-1-0716-1178-4_17.
10
Prophossi: automating expert validation of phosphopeptide-spectrum matches from tandem mass spectrometry.
Bioinformatics. 2010 Sep 1;26(17):2153-9. doi: 10.1093/bioinformatics/btq341. Epub 2010 Jul 22.

引用本文的文献

1
Leveraging HILIC/ERLIC separations for online nanoscale LC-MS/MS analysis of phosphopeptide isoforms from RNA polymerase II C-terminal domain.
J Chromatogr B Analyt Technol Biomed Life Sci. 2025 May 1;1257:124560. doi: 10.1016/j.jchromb.2025.124560. Epub 2025 Mar 17.
2
Single-Cell Proteomics: The Critical Role of Nanotechnology.
Int J Mol Sci. 2022 Jun 16;23(12):6707. doi: 10.3390/ijms23126707.
4
LIQUID: an-open source software for identifying lipids in LC-MS/MS-based lipidomics data.
Bioinformatics. 2017 Jun 1;33(11):1744-1746. doi: 10.1093/bioinformatics/btx046.
5
Impact of Amidination on Peptide Fragmentation and Identification in Shotgun Proteomics.
J Proteome Res. 2016 Oct 7;15(10):3656-3665. doi: 10.1021/acs.jproteome.6b00468. Epub 2016 Sep 27.
6
The Pacific Northwest National Laboratory library of bacterial and archaeal proteomic biodiversity.
Sci Data. 2015 Aug 18;2:150041. doi: 10.1038/sdata.2015.41. eCollection 2015.
7
Large-Scale Examination of Factors Influencing Phosphopeptide Neutral Loss during Collision Induced Dissociation.
J Am Soc Mass Spectrom. 2015 Jul;26(7):1128-42. doi: 10.1007/s13361-015-1109-y. Epub 2015 Apr 8.
8
PhosphoHunter: An Efficient Software Tool for Phosphopeptide Identification.
Adv Bioinformatics. 2015;2015:382869. doi: 10.1155/2015/382869. Epub 2015 Jan 12.
9
iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation.
BMC Bioinformatics. 2014;15 Suppl 16(Suppl 16):S10. doi: 10.1186/1471-2105-15-S16-S10. Epub 2014 Dec 8.
10
MS-GF+ makes progress towards a universal database search tool for proteomics.
Nat Commun. 2014 Oct 31;5:5277. doi: 10.1038/ncomms6277.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
2
Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10364-9. doi: 10.1073/pnas.0701622104. Epub 2007 Jun 11.
3
Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis.
Proteomics. 2007 May;7(9):1473-500. doi: 10.1002/pmic.200600871.
4
Automatic validation of phosphopeptide identifications from tandem mass spectra.
Anal Chem. 2007 Feb 15;79(4):1301-10. doi: 10.1021/ac061334v.
5
Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2193-8. doi: 10.1073/pnas.0607084104. Epub 2007 Feb 7.
6
Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry.
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2199-204. doi: 10.1073/pnas.0611217104. Epub 2007 Feb 7.
7
Large-scale phosphorylation analysis of mouse liver.
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1488-93. doi: 10.1073/pnas.0609836104. Epub 2007 Jan 22.
8
The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis.
Mol Cell Proteomics. 2007 Apr;6(4):697-707. doi: 10.1074/mcp.M600464-MCP200. Epub 2007 Jan 10.
9
Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS.
Mol Cell Proteomics. 2007 Apr;6(4):669-76. doi: 10.1074/mcp.M600218-MCP200. Epub 2007 Jan 5.
10
What is a support vector machine?
Nat Biotechnol. 2006 Dec;24(12):1565-7. doi: 10.1038/nbt1206-1565.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验