Suppr超能文献

一种基于判别核的方法,用于根据文本查询对图像进行排序。

A discriminative kernel-based approach to rank images from text queries.

作者信息

Grangier David, Bengio Samy

机构信息

IDIAP Research Institute, Centre du Parc, Av des Pres-Beudin 20, Case Postale, CH-1920 Martigny, Switzerland.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2008 Aug;30(8):1371-84. doi: 10.1109/TPAMI.2007.70791.

Abstract

This paper introduces a discriminative model for the retrieval of images from text queries. Our approach formalizes the retrieval task as a ranking problem, and introduces a learning procedure optimizing a criterion related to the ranking performance. The proposed model hence addresses the retrieval problem directly and does not rely on an intermediate image annotation task, which contrasts with previous research. Moreover, our learning procedure builds upon recent work on the online learning of kernel-based classifiers. This yields an efficient, scalable algorithm, which can benefit from recent kernels developed for image comparison. The experiments performed over stock photography data show the advantage of our discriminative ranking approach over state-of-the-art alternatives (e.g. our model yields 26.3% average precision over the Corel dataset, which should be compared to 22.0%, for the best alternative model evaluated). Further analysis of the results shows that our model is especially advantageous over difficult queries such as queries with few relevant pictures or multiple-word queries.

摘要

本文介绍了一种用于从文本查询中检索图像的判别模型。我们的方法将检索任务形式化为一个排序问题,并引入了一种学习过程,该过程优化与排序性能相关的准则。因此,所提出的模型直接解决了检索问题,并且不依赖于中间的图像标注任务,这与先前的研究形成对比。此外,我们的学习过程基于最近关于基于核的分类器的在线学习的工作。这产生了一种高效、可扩展的算法,该算法可以受益于最近为图像比较开发的核。对库存摄影数据进行的实验表明,我们的判别排序方法优于现有技术的替代方法(例如,在Corel数据集中,我们的模型平均精度为26.3%,而评估的最佳替代模型的平均精度为22.0%)。对结果的进一步分析表明,我们的模型在诸如相关图片较少的查询或多词查询等困难查询上特别有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验