Suppr超能文献

用于精细定位的贝叶斯空间多标记遗传随机效应模型。

A Bayesian spatial multimarker genetic random-effect model for fine-scale mapping.

作者信息

Tsai M-Y, Hsiao C K, Wen S-H

机构信息

Institute of Statistics and Information Science, College of Science, National Changhua University of Education.

出版信息

Ann Hum Genet. 2008 Sep;72(Pt 5):658-69. doi: 10.1111/j.1469-1809.2008.00459.x.

Abstract

Multiple markers in linkage disequilibrium (LD) are usually used to localize the disease gene location. These markers may contribute to the disease etiology simultaneously. In contrast to the single-locus tests, we propose a genetic random effects model that accounts for the dependence between loci via their spatial structures. In this model, the locus-specific random effects measure not only the genetic disease risk, but also the correlations between markers. In other words, the model incorporates this relation in both mean and covariance structures, and the variance components play important roles. We consider two different settings for the spatial relations. The first is our proposal, relative distance function (RDF), which is intuitive in the sense that markers nearby are likely to correlate with each other. The second setting is a common exponential decay function (EDF). Under each setting, the inference of the genetic parameters is fully Bayesian with Markov chain Monte Carlo (MCMC) sampling. We demonstrate the validity and the utility of the proposed approach with two real datasets and simulation studies. The analyses show that the proposed model with either one of two spatial correlations performs better as compared with the single locus analysis. In addition, under the RDF model, a more precise estimate for the disease locus can be obtained even when the candidate markers are fairly dense. In all simulations, the inference under the true model provides unbiased estimates of the genetic parameters, and the model with the spatial correlation structure does lead to greater confidence interval coverage probabilities.

摘要

处于连锁不平衡(LD)状态的多个标记通常用于定位疾病基因的位置。这些标记可能同时对疾病病因产生影响。与单基因座检验不同,我们提出了一种遗传随机效应模型,该模型通过基因座的空间结构来考虑基因座之间的依赖性。在这个模型中,基因座特异性随机效应不仅衡量遗传疾病风险,还衡量标记之间的相关性。换句话说,该模型在均值和协方差结构中都纳入了这种关系,并且方差分量起着重要作用。我们考虑了两种不同的空间关系设置。第一种是我们提出的相对距离函数(RDF),从附近标记可能相互关联的意义上来说它很直观。第二种设置是常见的指数衰减函数(EDF)。在每种设置下,遗传参数的推断都是通过马尔可夫链蒙特卡罗(MCMC)采样进行的全贝叶斯推断。我们用两个真实数据集和模拟研究证明了所提出方法的有效性和实用性。分析表明,与单基因座分析相比,具有两种空间相关性之一的所提出模型表现更好。此外,在RDF模型下,即使候选标记相当密集,也可以获得对疾病基因座更精确的估计。在所有模拟中,真实模型下的推断提供了遗传参数的无偏估计,并且具有空间相关结构的模型确实导致更大的置信区间覆盖概率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验