Rivera Harry, Lawton Jamie S, Budil David E, Smotkin Eugene S
Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico 00931, USA.
J Phys Chem B. 2008 Jul 24;112(29):8542-8. doi: 10.1021/jp803158h. Epub 2008 Jun 26.
The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 ECMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol-water incomplete mixing theories.
液体进料直接甲醇燃料电池(DMFC)阴极排气中的二氧化碳有两个来源:甲醇透过膜电极组件(MEA)扩散到阴极,在阴极被催化氧化为二氧化碳;此外,阳极产生的一部分二氧化碳透过MEA扩散到阴极。通过在线电化学质谱(ECMS)监测阴极分别通入空气和氢气时与电位相关的阴极二氧化碳排放。通过对甲醇/空气与甲醇/氢气的ECMS数据进行减法归一化处理,能够精确测定甲醇和二氧化碳的穿透速率,结果表明甲醇会降低膜的粘度,从而增加吸附在膜上的组分的扩散系数。二氧化碳的穿透最初随甲醇的法拉第氧化呈线性增加,达到一个与温度相关的最大值,然后下降。随着甲醇从阳极/电解质界面被电化学消耗,膜的粘度逐渐增加。当扩散系数和膜中二氧化碳溶解度的电流依赖性超过二氧化碳的法拉第生成时,就会出现穿透最大值。通过电子自旋共振光谱法测量TEMPONE(2,2,6,6 - 四甲基 - 4 - 哌啶酮N - 氧化物)自旋探针的旋转扩散,证实了甲醇的增塑作用。甲醇穿透速率与电流密度之间的线性反比关系证实,在与运行中的DMFC相关的浓度下不存在甲醇电渗拖拽现象。甲醇的纯扩散传输可以根据当前质子溶剂化和甲醇 - 水不完全混合理论来解释。