Suppr超能文献

自适应正则化

Self-adaptive regularization.

作者信息

Vanzella Walter, Pellegrino Felice Andrea, Torre Vincent

机构信息

Neurobiology Sector, SISSA/ISAS, Via Beirut 7, Trieste, Italy.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2004 Jun;26(6):804-9. doi: 10.1109/TPAMI.2004.15.

Abstract

Often an image g(x,y) is regularized and even restored by minimizing the Mumford-Shah functional. Properties of the regularized image u(x,y) depends critically on the numerical value of the two parameters alpha and gamma controlling smoothness and fidelity. When alpha and gamma are constant over the image, small details are lost when an extensive filtering is used in order to remove noise. In this paper, it is shown how the two parameters alpha and gamma can be made self-adaptive. In fact, alpha and gamma are not constant but automatically adapt to the local scale and contrast of features in the image. In this way, edges at all scales are detected and boundaries are well-localized and preserved. In order to preserve trihedral junctions alpha and gamma become locally small and the regularized image u(x,y) maintains sharp and well-defined trihedral junctions. Images regularized by the proposed procedure are well-suited for further processing, such as image segmentation and object recognition.

摘要

通常,图像g(x,y)通过最小化Mumford-Shah泛函进行正则化甚至恢复。正则化图像u(x,y)的属性严重依赖于控制平滑度和保真度的两个参数α和γ的数值。当α和γ在图像上恒定时,为了去除噪声而进行广泛滤波时会丢失小细节。本文展示了如何使α和γ这两个参数自适应。实际上,α和γ不是恒定的,而是自动适应图像中特征的局部尺度和对比度。通过这种方式,可以检测到所有尺度的边缘,边界也能很好地定位和保留。为了保留三面体连接,α和γ在局部变小,正则化图像u(x,y)保持尖锐且定义明确的三面体连接。通过所提出的过程进行正则化的图像非常适合进一步处理,如图像分割和目标识别。

相似文献

1
Self-adaptive regularization.
IEEE Trans Pattern Anal Mach Intell. 2004 Jun;26(6):804-9. doi: 10.1109/TPAMI.2004.15.
2
A versatile segmentation procedure.
IEEE Trans Syst Man Cybern B Cybern. 2006 Apr;36(2):366-78. doi: 10.1109/tsmcb.2005.859077.
3
Adaptive bilateral filter for sharpness enhancement and noise removal.
IEEE Trans Image Process. 2008 May;17(5):664-78. doi: 10.1109/TIP.2008.919949.
4
Mumford and Shah functional: VLSI analysis and implementation.
IEEE Trans Pattern Anal Mach Intell. 2006 Mar;28(3):487-94. doi: 10.1109/TPAMI.2006.59.
5
Regularization approaches to demosaicking.
IEEE Trans Image Process. 2009 Oct;18(10):2209-20. doi: 10.1109/TIP.2009.2025092. Epub 2009 Jun 12.
6
Multiscale joint segmentation and registration of image morphology.
IEEE Trans Pattern Anal Mach Intell. 2007 Dec;29(12):2181-94. doi: 10.1109/TPAMI.2007.1120.
7
A multiresolution stochastic level set method for Mumford-Shah image segmentation.
IEEE Trans Image Process. 2008 Dec;17(12):2289-300. doi: 10.1109/TIP.2008.2005823.
8
A variational method for geometric regularization of vascular segmentation in medical images.
IEEE Trans Image Process. 2008 Aug;17(8):1295-312. doi: 10.1109/TIP.2008.925378.
9
Edge-preserving filtering of images with low photon counts.
IEEE Trans Pattern Anal Mach Intell. 2008 Jun;30(6):1014-27. doi: 10.1109/TPAMI.2008.16.
10
Detection and segmentation of concealed objects in terahertz images.
IEEE Trans Image Process. 2008 Dec;17(12):2465-75. doi: 10.1109/TIP.2008.2006662.

引用本文的文献

1
Enhancing precision in time-domain fluorescence lifetime imaging.
J Biomed Opt. 2010 Sep-Oct;15(5):056013. doi: 10.1117/1.3494566.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验