Zhang Yu, Prakash Edmond C, Sung Eric
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore.
IEEE Trans Vis Comput Graph. 2004 May-Jun;10(3):339-52. doi: 10.1109/TVCG.2004.1272733.
This paper presents a new physically-based 3D facial model based on anatomical knowledge which provides high fidelity for facial expression animation while optimizing the computation. Our facial model has a multilayer biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators, and underlying skull structure. In contrast to existing mass-spring-damper (MSD) facial models, our dynamic skin model uses the nonlinear springs to directly simulate the nonlinear visco-elastic behavior of soft tissue and a new kind of edge repulsion spring is developed to prevent collapse of the skin model. Different types of muscle models have been developed to simulate distribution of the muscle force applied on the skin due to muscle contraction. The presence of the skull advantageously constrain the skin movements, resulting in more accurate facial deformation and also guides the interactive placement of facial muscles. The governing dynamics are computed using a local semi-implicit ODE solver. In the dynamic simulation, an adaptive refinement automatically adapts the local resolution at which potential inaccuracies are detected depending on local deformation. The method, in effect, ensures the required speedup by concentrating computational time only where needed while ensuring realistic behavior within a predefined error threshold. This mechanism allows more pleasing animation results to be produced at a reduced computational cost.
本文提出了一种基于解剖学知识的新型物理三维面部模型,该模型在优化计算的同时,为面部表情动画提供了高保真度。我们的面部模型具有多层生物力学结构,包括对面部皮肤组织的基于物理的近似、一组基于解剖学的面部肌肉驱动器以及底层的颅骨结构。与现有的质量弹簧阻尼(MSD)面部模型不同,我们的动态皮肤模型使用非线性弹簧直接模拟软组织的非线性粘弹性行为,并开发了一种新型的边缘排斥弹簧来防止皮肤模型坍塌。已经开发了不同类型的肌肉模型来模拟由于肌肉收缩而施加在皮肤上的肌肉力分布。颅骨的存在有利地限制了皮肤运动,从而导致更精确的面部变形,并且还指导面部肌肉的交互式放置。使用局部半隐式常微分方程求解器计算控制动力学。在动态模拟中,自适应细化根据局部变形自动调整检测到潜在不准确之处的局部分辨率。实际上,该方法通过仅在需要的地方集中计算时间来确保所需的加速,同时在预定义的误差阈值内确保逼真的行为。这种机制允许以降低的计算成本产生更令人满意的动画结果。