Ebara Mitsuhiro, Yamato Masayuki, Aoyagi Takao, Kikuchi Akihiko, Sakai Kiyotaka, Okano Teruo
Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
Biomaterials. 2008 Sep;29(27):3650-3655. doi: 10.1016/j.biomaterials.2008.05.030. Epub 2008 Jun 25.
The affinity control of integrin-RGD (Arg-Gly-Asp) binding by a thermal "on-off" switch has been achieved using newly designed surfaces presenting grafted temperature-responsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) copolymers functionalized with synthetic peptides. The prepared surface was designed to expose the tethered peptides available for cell binding at active "on" state above the lower critical solution temperature (LCST). The fully extended chains, on the other hand, masked the peptides completely and the cells started to detach from the surfaces at inactive "off" sate below the LCST. This paper elucidates the shielding effect of the grafted polymer chains on the dissociation of integrin-RGD binding below the LCST. To assess the ability of the polymer-shielding, extensible poly(ethylene glycol) (PEG) tethers were introduced between peptides and the grafted polymers. PEG chains allow peptides to be tethered to surfaces via functional PEG end-groups, leading to active "on" state even below the LCST. The time required to release cells from the surface was found to be longer when peptides were coupled to an extensible tether ends, suggesting that the surfaces can engender cell attachment through adhesive moieties covalently bound to the free ends of PEG chains. These results indicate that architectural changes on the nanometer length scale are crucial for controlling integrin-RGD binding and one of the main factors causing cell detachment is the shielding effect of the grafted polymer chains.
通过使用新设计的表面,实现了利用热“开-关”开关对整合素与RGD(精氨酸-甘氨酸-天冬氨酸)结合的亲和力控制。该表面呈现接枝有温度响应性聚(N-异丙基丙烯酰胺-co-2-羧基异丙基丙烯酰胺)共聚物,并用合成肽进行功能化修饰。所制备的表面设计为在低于下临界溶液温度(LCST)的活性“开”状态下,暴露可用于细胞结合的连接肽。另一方面,完全伸展的链会完全掩盖这些肽,并且在低于LCST的非活性“关”状态下,细胞开始从表面脱离。本文阐明了接枝聚合物链在低于LCST时对整合素-RGD结合解离的屏蔽作用。为了评估聚合物屏蔽的能力,在肽和接枝聚合物之间引入了可伸展的聚乙二醇(PEG)连接链。PEG链允许肽通过功能性PEG端基连接到表面,即使在低于LCST时也能导致活性“开”状态。当肽与可伸展的连接链末端偶联时,发现细胞从表面释放所需的时间更长,这表明这些表面可以通过与PEG链自由端共价结合的粘附部分促进细胞附着。这些结果表明,纳米长度尺度上的结构变化对于控制整合素-RGD结合至关重要,导致细胞脱离的主要因素之一是接枝聚合物链的屏蔽作用。