Suppr超能文献

蝴蝶眼斑焦点确定的遗传调控层次中突变的模拟研究。

A simulation study of mutations in the genetic regulatory hierarchy for butterfly eyespot focus determination.

作者信息

Marcus Jeffrey M, Evans Travis M

机构信息

Department of Biology, Western Kentucky University, 1906 College Heights Boulevard #11080, Bowling Green, KY 42101-1080, USA.

出版信息

Biosystems. 2008 Sep;93(3):250-5. doi: 10.1016/j.biosystems.2008.05.006. Epub 2008 Jun 8.

Abstract

The color patterns on the wings of butterflies have been an important model system in evolutionary developmental biology. A recent computational model tested genetic regulatory hierarchies hypothesized to underlie the formation of butterfly eyespot foci [Evans, T.M., Marcus, J.M., 2006. A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination. Evol. Dev. 8, 273-283]. The computational model demonstrated that one proposed hierarchy was incapable of reproducing the known patterns of gene expression associated with eyespot focus determination in wild-type butterflies, but that two slightly modified alternative hierarchies were capable of reproducing all of the known gene expressions patterns. Here we extend the computational models previously implemented in Delphi 2.0 to two mutants derived from the squinting bush brown butterfly (Bicyclus anynana). These two mutants, comet and Cyclops, have aberrantly shaped eyespot foci that are produced by different mechanisms. The comet mutation appears to produce a modified interaction between the wing margin and the eyespot focus that results in a series of comet-shaped eyespot foci. The Cyclops mutation causes the failure of wing vein formation between two adjacent wing-cells and the fusion of two adjacent eyespot foci to form a single large elongated focus in their place. The computational approach to modeling pattern formation in these mutants allows us to make predictions about patterns of gene expression, which are largely unstudied in butterfly mutants. It also suggests a critical experiment that will allow us to distinguish between two hypothesized genetic regulatory hierarchies that may underlie all butterfly eyespot foci.

摘要

蝴蝶翅膀上的色彩图案一直是进化发育生物学中的一个重要模型系统。最近的一个计算模型测试了被认为是蝴蝶眼斑中心形成基础的遗传调控层级[埃文斯,T.M.,马库斯,J.M.,2006年。蝴蝶眼斑中心确定的遗传调控层级的模拟研究。《进化与发育》8,273 - 283页]。该计算模型表明,一种提出的层级无法重现与野生型蝴蝶眼斑中心确定相关的已知基因表达模式,但两种略有修改的替代层级能够重现所有已知的基因表达模式。在这里,我们将先前在Delphi 2.0中实现的计算模型扩展到源自眯眼褐蛱蝶(Bicyclus anynana)的两个突变体。这两个突变体,彗星和独眼巨人,具有异常形状的眼斑中心,它们是由不同机制产生的。彗星突变似乎在翅缘和眼斑中心之间产生了一种改变的相互作用,导致一系列彗星状的眼斑中心。独眼巨人突变导致两个相邻翅室之间的翅脉形成失败,以及两个相邻眼斑中心融合,在其位置形成一个单一的大的细长中心。对这些突变体中图案形成进行建模的计算方法使我们能够对基因表达模式进行预测,而这些在蝴蝶突变体中大多未被研究。它还提出了一个关键实验,将使我们能够区分可能是所有蝴蝶眼斑中心基础的两种假设的遗传调控层级。

相似文献

1
A simulation study of mutations in the genetic regulatory hierarchy for butterfly eyespot focus determination.
Biosystems. 2008 Sep;93(3):250-5. doi: 10.1016/j.biosystems.2008.05.006. Epub 2008 Jun 8.
2
A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination.
Evol Dev. 2006 May-Jun;8(3):273-83. doi: 10.1111/j.1525-142X.2006.00098.x.
4
The generation and diversification of butterfly eyespot color patterns.
Curr Biol. 2001 Oct 16;11(20):1578-85. doi: 10.1016/s0960-9822(01)00502-4.
5
Structure of a character and the evolution of butterfly eyespot patterns.
J Exp Zool. 2001 Aug 15;291(2):93-104. doi: 10.1002/jez.1062.
6
Concerted evolution and developmental integration in modular butterfly wing patterns.
Evol Dev. 2003 Mar-Apr;5(2):169-79. doi: 10.1046/j.1525-142x.2003.03025.x.
7
Automatic recognition and measurement of butterfly eyespot patterns.
Biosystems. 2009 Feb;95(2):130-6. doi: 10.1016/j.biosystems.2008.09.004. Epub 2008 Oct 5.
8
Mutants highlight the modular control of butterfly eyespot patterns.
Evol Dev. 2003 Mar-Apr;5(2):180-7. doi: 10.1046/j.1525-142x.2003.03029.x.
9
Differential involvement of Hedgehog signaling in butterfly wing and eyespot development.
PLoS One. 2012;7(12):e51087. doi: 10.1371/journal.pone.0051087. Epub 2012 Dec 5.

引用本文的文献

1
A new A-P compartment boundary and organizer in holometabolous insect wings.
Sci Rep. 2017 Nov 27;7(1):16337. doi: 10.1038/s41598-017-16553-5.
2
Focusing on butterfly eyespot focus: uncoupling of white spots from eyespot bodies in nymphalid butterflies.
Springerplus. 2016 Aug 8;5(1):1287. doi: 10.1186/s40064-016-2969-8. eCollection 2016.
3
The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology.
Math Model Nat Phenom. 2009 Jan 1;4(4):3-82. doi: 10.1051/mmnp/20094401.

本文引用的文献

1
VIABILITY SELECTION ON SEASONALLY POLYPHENIC TRAITS: WING MELANIN PATTERN IN WESTERN WHITE BUTTERFLIES.
Evolution. 1995 Oct;49(5):932-941. doi: 10.1111/j.1558-5646.1995.tb02328.x.
2
Transgenic approaches to study wing color pattern development in Lepidoptera.
Mol Biosyst. 2007 Aug;3(8):530-5. doi: 10.1039/b701965n. Epub 2007 Jun 26.
3
A wing expressed sequence tag resource for Bicyclus anynana butterflies, an evo-devo model.
BMC Genomics. 2006 May 31;7:130. doi: 10.1186/1471-2164-7-130.
4
A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination.
Evol Dev. 2006 May-Jun;8(3):273-83. doi: 10.1111/j.1525-142X.2006.00098.x.
5
The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera.
Biol Rev Camb Philos Soc. 2005 Nov;80(4):573-88. doi: 10.1017/S1464793105006810.
6
Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils.
Proc Biol Sci. 2005 Aug 7;272(1572):1541-6. doi: 10.1098/rspb.2005.3142.
7
Jumping genes and AFLP maps: transforming lepidopteran color pattern genetics.
Evol Dev. 2005 Mar-Apr;7(2):108-14. doi: 10.1111/j.1525-142X.2005.05012.x.
8
Germline transformation of the butterfly Bicyclus anynana.
Proc Biol Sci. 2004 Aug 7;271 Suppl 5(Suppl 5):S263-5. doi: 10.1098/rsbl.2004.0175.
9
Modelling butterfly wing eyespot patterns.
Proc Biol Sci. 2004 Aug 7;271(1548):1565-9. doi: 10.1098/rspb.2004.2761.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验