Suppr超能文献

钙调蛋白如何与腺苷A(2A)受体和多巴胺D(2)受体相互作用。

How calmodulin interacts with the adenosine A(2A) and the dopamine D(2) receptors.

作者信息

Woods Amina S, Marcellino Daniel, Jackson Shelley N, Franco Rafael, Ferré Sergi, Agnati Luigi F, Fuxe Kjell

机构信息

National Institute on Drug Abuse, IRP, NIH, DHHS, Baltimore, MD 21224, USA.

出版信息

J Proteome Res. 2008 Aug;7(8):3428-34. doi: 10.1021/pr8001782. Epub 2008 Jul 1.

Abstract

Receptor heteromerization is a mechanism used by G protein-coupled receptors to diversify their properties and function. We previously demonstrated that these interactions occur through salt bridge formation between epitopes of the involved receptors. Recent studies claim that calmodulin (CaM) binds to an Arg-rich epitope located in the amino-terminus of the dopamine D(2) receptor third intracellular loop. This is the same epitope involved in adenosine A(2A)-D(2) receptor heteromerization, through Coulombic interaction between the Arg residues and a phosphorylated serine (pS) located in the medial segment of the C-terminus of the A(2A) receptor. Mass spectrometric analysis indicates that an electrostatic interaction involving the D(2) receptor Arg-rich epitope and several CaM acidic epitopes are mainly responsible for the D(2) receptor-CaM binding. CaM could also form multiple noncovalent complexes by means of electrostatic interactions with an epitope localized in the proximal segment of the C-terminus of the A(2A) receptor. Ca(2+) disrupted the binding of CaM to the D(2) but not to the A(2A) receptor epitope, and CaM disrupted the electrostatic interactions between the D(2) receptor epitope and the more distal A(2A) receptor epitope. A model is introduced with the possible functional implications of A(2A)-D(2)-CaM interactions. These in vitro findings imply a possible regulatory role for CaM in receptor heteromers formation.

摘要

受体异聚化是G蛋白偶联受体用于使其特性和功能多样化的一种机制。我们之前证明这些相互作用是通过所涉及受体表位之间形成盐桥而发生的。最近的研究表明钙调蛋白(CaM)与位于多巴胺D(2)受体第三细胞内环氨基末端的富含精氨酸的表位结合。这与腺苷A(2A)-D(2)受体异聚化中涉及的表位相同,通过精氨酸残基与位于A(2A)受体C末端中间段的磷酸化丝氨酸(pS)之间的库仑相互作用实现。质谱分析表明,涉及D(2)受体富含精氨酸表位和几个CaM酸性表位的静电相互作用是D(2)受体与CaM结合的主要原因。CaM还可通过与位于A(2A)受体C末端近端段的一个表位的静电相互作用形成多个非共价复合物。Ca(2+)破坏了CaM与D(2)受体的结合,但不影响其与A(2A)受体表位的结合,并且CaM破坏了D(2)受体表位与更远端的A(2A)受体表位之间的静电相互作用。本文引入了一个关于A(2A)-D(2)-CaM相互作用可能功能意义的模型。这些体外研究结果暗示CaM在受体异聚体形成中可能具有调节作用。

相似文献

1
How calmodulin interacts with the adenosine A(2A) and the dopamine D(2) receptors.
J Proteome Res. 2008 Aug;7(8):3428-34. doi: 10.1021/pr8001782. Epub 2008 Jul 1.
2
Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors.
J Biol Chem. 2009 Oct 9;284(41):28058-28068. doi: 10.1074/jbc.M109.034231. Epub 2009 Jul 24.
3
Role of electrostatic interaction in receptor-receptor heteromerization.
J Mol Neurosci. 2005;26(2-3):125-32. doi: 10.1385/JMN:26:2-3:125.
5
Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders.
Parkinsonism Relat Disord. 2004 Jul;10(5):265-71. doi: 10.1016/j.parkreldis.2004.02.014.
6
Calcium-mediated modulation of the quaternary structure and function of adenosine A2A-dopamine D2 receptor heteromers.
Curr Opin Pharmacol. 2010 Feb;10(1):67-72. doi: 10.1016/j.coph.2009.10.002. Epub 2009 Nov 10.
7
A serine point mutation in the adenosine A2AR C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D2R.
Biochem Biophys Res Commun. 2010 Mar 26;394(1):222-7. doi: 10.1016/j.bbrc.2010.02.168. Epub 2010 Mar 1.
8
Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes.
Mol Pharmacol. 2005 Feb;67(2):400-7. doi: 10.1124/mol.104.003376. Epub 2004 Nov 11.
9
MALDI/post ionization-ion mobility mass spectrometry of noncovalent complexes of dopamine receptors' epitopes.
J Proteome Res. 2013 Apr 5;12(4):1668-77. doi: 10.1021/pr301004w. Epub 2013 Mar 25.

引用本文的文献

1
Tumor-Associated Glycan Exploits Adenosine Receptor 2A Signaling to Facilitate Immune Evasion.
Adv Sci (Weinh). 2025 Jul;12(27):e2416501. doi: 10.1002/advs.202416501. Epub 2025 Jun 18.
5
Histidine, the less interactive cousin of arginine.
Eur J Mass Spectrom (Chichester). 2019 Apr;25(2):212-218. doi: 10.1177/1469066718791793.
6
Calcium Sensors in Neuronal Function and Dysfunction.
Cold Spring Harb Perspect Biol. 2019 May 1;11(5):a035154. doi: 10.1101/cshperspect.a035154.
7
Neuronal Calcium and cAMP Cross-Talk Mediated by Cannabinoid CB Receptor and EF-Hand Calcium Sensor Interactions.
Front Cell Dev Biol. 2018 Jul 19;6:67. doi: 10.3389/fcell.2018.00067. eCollection 2018.
8
Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner.
Biophys J. 2015 Feb 17;108(4):903-917. doi: 10.1016/j.bpj.2014.12.036.
9
Functional characterization of G-protein-coupled receptors: a bioinformatics approach.
Neuroscience. 2014 Sep 26;277:764-79. doi: 10.1016/j.neuroscience.2014.06.049. Epub 2014 Jul 2.
10
Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field.
Neuropsychopharmacology. 2014 Jan;39(1):131-55. doi: 10.1038/npp.2013.242. Epub 2013 Sep 6.

本文引用的文献

1
Adenosine receptor heteromers and their integrative role in striatal function.
ScientificWorldJournal. 2007 Nov 2;7:74-85. doi: 10.1100/tsw.2007.211.
2
A novel dopamine receptor signaling unit in brain: heterooligomers of D1 and D2 dopamine receptors.
ScientificWorldJournal. 2007 Nov 2;7:58-63. doi: 10.1100/tsw.2007.223.
3
Basic concepts in G-protein-coupled receptor homo- and heterodimerization.
ScientificWorldJournal. 2007 Nov 2;7:48-57. doi: 10.1100/tsw.2007.197.
4
Functional relevance of neurotransmitter receptor heteromers in the central nervous system.
Trends Neurosci. 2007 Sep;30(9):440-6. doi: 10.1016/j.tins.2007.07.001. Epub 2007 Aug 10.
5
Evidence that calmodulin binding to the dopamine D2 receptor enhances receptor signaling.
J Recept Signal Transduct Res. 2007;27(1):47-65. doi: 10.1080/10799890601094152.
6
7
Calmodulin binding to peptides derived from the i3 loop of muscarinic receptors.
Pharm Res. 2006 Apr;23(4):647-53. doi: 10.1007/s11095-006-9784-9.
8
Phosphate stabilization of intermolecular interactions.
J Proteome Res. 2006 Jan;5(1):122-6. doi: 10.1021/pr0503578.
9
Study of the fragmentation patterns of the phosphate-arginine noncovalent bond.
J Proteome Res. 2005 Nov-Dec;4(6):2360-3. doi: 10.1021/pr050261d.
10
Amazing stability of the arginine-phosphate electrostatic interaction.
J Proteome Res. 2005 Jul-Aug;4(4):1397-402. doi: 10.1021/pr050077s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验