Suppr超能文献

通过抑制酪氨酸激酶诱导的白血病中Hsp90β磷酸化来抑制凋亡小体形成。

Inhibition of apoptosome formation by suppression of Hsp90beta phosphorylation in tyrosine kinase-induced leukemias.

作者信息

Kurokawa Manabu, Zhao Chen, Reya Tannishtha, Kornbluth Sally

机构信息

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Durham, NC 27710, USA.

出版信息

Mol Cell Biol. 2008 Sep;28(17):5494-506. doi: 10.1128/MCB.00265-08. Epub 2008 Jun 30.

Abstract

Constitutively active tyrosine kinases promote leukemogenesis by increasing cell proliferation and inhibiting apoptosis. However, mechanisms underlying apoptotic inhibition have not been fully elucidated. In many settings, apoptosis occurs by mitochondrial cytochrome c release, which nucleates the Apaf-1/caspase-9 apoptosome. Here we report that the leukemogenic kinases, Bcr-Abl, FLT3/D835Y, and Tel-PDGFRbeta, all can inhibit apoptosome function. In cells expressing these kinases, the previously reported apoptosome inhibitor, Hsp90beta, bound strongly to Apaf-1, preventing cytochrome c-induced Apaf-1 oligomerization and caspase-9 recruitment. Hsp90beta interacted weakly with the apoptosome in untransformed cells. While Hsp90beta was phosphorylated at Ser 226/Ser 255 in untransformed cells, phosphorylation was absent in leukemic cells. Expression of mutant Hsp90beta (S226A/S255A), which mimics the hypophosphorylated form in leukemic cells, conferred resistance to cytochrome c-induced apoptosome activation in normal cells, reflecting enhanced binding of nonphosphorylatable Hsp90beta to Apaf-1. In Bcr-Abl-positive mouse bone marrow cells, nonphosphorylatable Hsp90beta expression conferred imatinib (Gleevec) resistance. These data provide an explanation for apoptosome inhibition by activated leukemogenic tyrosine kinases and suggest that alterations in Hsp90beta-apoptosome interactions may contribute to chemoresistance in leukemias.

摘要

组成型激活的酪氨酸激酶通过增加细胞增殖和抑制凋亡来促进白血病发生。然而,凋亡抑制的潜在机制尚未完全阐明。在许多情况下,凋亡通过线粒体细胞色素c释放而发生,这会形成Apaf-1/半胱天冬酶-9凋亡小体。在此我们报告,致白血病激酶Bcr-Abl、FLT3/D835Y和Tel-PDGFRβ均能抑制凋亡小体功能。在表达这些激酶的细胞中,先前报道的凋亡小体抑制剂Hsp90β与Apaf-1强烈结合,阻止细胞色素c诱导的Apaf-1寡聚化和半胱天冬酶-9募集。Hsp90β在未转化细胞中与凋亡小体的相互作用较弱。虽然Hsp90β在未转化细胞中的Ser 226/Ser 255位点发生磷酸化,但在白血病细胞中不存在磷酸化。突变型Hsp90β(S226A/S255A)的表达模拟了白血病细胞中的低磷酸化形式,赋予正常细胞对细胞色素c诱导的凋亡小体激活的抗性,这反映了不可磷酸化的Hsp90β与Apaf-1的结合增强。在Bcr-Abl阳性小鼠骨髓细胞中,不可磷酸化的Hsp90β表达赋予了对伊马替尼(格列卫)的抗性。这些数据为活化的致白血病酪氨酸激酶抑制凋亡小体提供了解释,并表明Hsp90β-凋亡小体相互作用的改变可能导致白血病的化疗耐药性。

相似文献

1
Inhibition of apoptosome formation by suppression of Hsp90beta phosphorylation in tyrosine kinase-induced leukemias.
Mol Cell Biol. 2008 Sep;28(17):5494-506. doi: 10.1128/MCB.00265-08. Epub 2008 Jun 30.
2
Dihydroartemisinin inhibits the Bcr/Abl oncogene at the mRNA level in chronic myeloid leukemia sensitive or resistant to imatinib.
Biomed Pharmacother. 2013 Mar;67(2):157-63. doi: 10.1016/j.biopha.2012.10.017. Epub 2012 Nov 19.
4
ARG tyrosine kinase activity is inhibited by STI571.
Blood. 2001 Apr 15;97(8):2440-8. doi: 10.1182/blood.v97.8.2440.
7
Loss of WD2 subdomain of Apaf-1 forms an apoptosome structure which blocks activation of caspase-3 and caspase-9.
Biochimie. 2021 Jan;180:23-29. doi: 10.1016/j.biochi.2020.10.013. Epub 2020 Oct 24.
8
A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2.
J Biol Chem. 2004 Aug 13;279(33):34227-39. doi: 10.1074/jbc.M402290200. Epub 2004 Jun 2.
9
Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells.
Biochim Biophys Acta. 2015 Feb;1853(2):388-95. doi: 10.1016/j.bbamcr.2014.11.008. Epub 2014 Nov 15.

引用本文的文献

1
The Hsp90β Isoform: An Attractive Target for Drug Development.
Med Res Rev. 2025 Sep;45(5):1452-1465. doi: 10.1002/med.22114. Epub 2025 Apr 28.
2
HSP90 multi-functionality in cancer.
Front Immunol. 2024 Aug 1;15:1436973. doi: 10.3389/fimmu.2024.1436973. eCollection 2024.
3
Inhibition of casein kinase 2 induces cell death in tyrosine kinase inhibitor resistant chronic myelogenous leukemia cells.
PLoS One. 2023 May 4;18(5):e0284876. doi: 10.1371/journal.pone.0284876. eCollection 2023.
4
Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance.
Biomolecules. 2022 Aug 23;12(9):1166. doi: 10.3390/biom12091166.
5
Juvenile Hormone Membrane Signaling Enhances its Intracellular Signaling Through Phosphorylation of Met and Hsp83.
Front Physiol. 2022 Apr 27;13:872889. doi: 10.3389/fphys.2022.872889. eCollection 2022.
7
8
The Charged Linker Modulates the Conformations and Molecular Interactions of Hsp90.
Chembiochem. 2021 Mar 16;22(6):1084-1092. doi: 10.1002/cbic.202000699. Epub 2020 Dec 9.
10
Post-translational modifications of Hsp90 and translating the chaperone code.
J Biol Chem. 2020 Aug 7;295(32):11099-11117. doi: 10.1074/jbc.REV120.011833. Epub 2020 Jun 11.

本文引用的文献

1
Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo.
Cancer Cell. 2007 Dec;12(6):528-41. doi: 10.1016/j.ccr.2007.11.003.
4
An acetylation site in the middle domain of Hsp90 regulates chaperone function.
Mol Cell. 2007 Jan 12;25(1):151-9. doi: 10.1016/j.molcel.2006.12.008.
5
Fusion tyrosine kinases: a result and cause of genomic instability.
Oncogene. 2007 Jan 4;26(1):11-20. doi: 10.1038/sj.onc.1209756. Epub 2006 Jun 19.
6
The apoptosome: physiological, developmental, and pathological modes of regulation.
Dev Cell. 2006 May;10(5):549-61. doi: 10.1016/j.devcel.2006.04.008.
7
The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90.
EMBO J. 2006 Jan 25;25(2):367-76. doi: 10.1038/sj.emboj.7600930. Epub 2006 Jan 12.
10
HSP90 and the chaperoning of cancer.
Nat Rev Cancer. 2005 Oct;5(10):761-72. doi: 10.1038/nrc1716.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验