Suppr超能文献

时间聚类分析:它能告诉我们关于大脑静息状态的哪些信息?

Temporal clustering analysis: what does it tell us about the resting state of the brain?

作者信息

Morgan Victoria L, Gore John C, Szaflarski Jerzy P

机构信息

Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.

出版信息

Med Sci Monit. 2008 Jul;14(7):CR345-52.

Abstract

BACKGROUND

Several networks of synchronous blood oxygen level dependent (BOLD) oscillations have been identified in the brain during the resting state. The aim of this study was to further characterize the dynamic nature of the brain at rest by investigating the presence and distribution of coherent, transient BOLD activity in resting fMRI data using a novel method of fMRI data analysis--2dTCA.

MATERIAL/METHODS: High-field fMRI data were acquired in 27 subjects. The temporal clustering analysis, 2dTCA, was implemented to determine the timing of significant, spatially coherent, transient BOLD signal changes. Group maps of positive and negative coherent BOLD changes from each timing profile were created.

RESULTS

Spontaneous increases in BOLD activity at both 3T and 4T and decreases at 4T were found in regions of the alpha rhythm circuit including the thalamus, precuneus and the occipital cortex. Additional positive and negative oscillations at 4T and a small region of positive activity at 3T were identified in the area of the brain stem reticular formation, the control center for maintaining arousal and motivation.

CONCLUSIONS

These results provide additional evidence for the presence of dynamic functional networks in the resting brain that are active while the subjects appear to be at rest and that are spatially distributed in areas responsible for maintaining consciousness and vigilance including brain stem. These findings should be considered in interpreting fMRI results which use resting baseline for comparisons.

摘要

背景

在静息状态下,大脑中已识别出几个同步的血氧水平依赖(BOLD)振荡网络。本研究的目的是通过使用一种新的功能磁共振成像(fMRI)数据分析方法——二维时间聚类分析(2dTCA),研究静息fMRI数据中相干、短暂BOLD活动的存在和分布,以进一步表征静息状态下大脑的动态特性。

材料/方法:对27名受试者采集高场fMRI数据。实施时间聚类分析(2dTCA)以确定显著的、空间相干的、短暂BOLD信号变化的时间。创建每个时间剖面的正向和负向相干BOLD变化的组图。

结果

在包括丘脑、楔前叶和枕叶皮质的α节律回路区域,发现3T和4T时BOLD活动自发增加,4T时BOLD活动自发减少。在脑干网状结构区域(维持觉醒和动机的控制中心),识别出4T时额外的正向和负向振荡以及3T时一个小的正向活动区域。

结论

这些结果为静息大脑中存在动态功能网络提供了额外证据,这些网络在受试者看似静息时处于活跃状态,且在空间上分布于负责维持意识和警觉的区域,包括脑干。在解释以静息基线进行比较的fMRI结果时应考虑这些发现。

相似文献

2
EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement.
Neuroimage. 2009 Apr 1;45(2):319-32. doi: 10.1016/j.neuroimage.2008.11.014. Epub 2008 Nov 28.
3
Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
Neuroimage. 2012 May 1;60(4):2062-72. doi: 10.1016/j.neuroimage.2012.02.031. Epub 2012 Feb 22.
4
Cluster analysis of resting-state fMRI time series.
Neuroimage. 2009 May 1;45(4):1117-25. doi: 10.1016/j.neuroimage.2008.12.015. Epub 2008 Dec 25.
5
Resting-state fMRI: a review of methods and clinical applications.
AJNR Am J Neuroradiol. 2013 Oct;34(10):1866-72. doi: 10.3174/ajnr.A3263. Epub 2012 Aug 30.
7
The relationship between BOLD and neural activity arises from temporally sparse events.
Neuroimage. 2020 Feb 15;207:116390. doi: 10.1016/j.neuroimage.2019.116390. Epub 2019 Nov 27.
8
Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.
Int J Neural Syst. 2018 Sep;28(7):1850002. doi: 10.1142/S0129065718500028. Epub 2018 Jan 25.
9
Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
J Neurosci Res. 2018 Oct;96(10):1689-1698. doi: 10.1002/jnr.24257. Epub 2018 May 14.
10
BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat.
Neuroimage. 2008 Jan 1;39(1):248-60. doi: 10.1016/j.neuroimage.2007.07.063. Epub 2007 Aug 22.

引用本文的文献

1
Sex, Age, and Handedness Modulate the Neural Correlates of Active Learning.
Front Neurosci. 2019 Sep 11;13:961. doi: 10.3389/fnins.2019.00961. eCollection 2019.
2
The Disruptive Nature of Focal Developmental Insults.
Epilepsy Curr. 2018 Jan-Feb;18(1):29-30. doi: 10.5698/1535-7597.18.1.29.
3
Relationship Between Alpha Rhythm and the Default Mode Network: An EEG-fMRI Study.
J Clin Neurophysiol. 2017 Nov;34(6):527-533. doi: 10.1097/WNP.0000000000000411.
4
Progression to deep sleep is characterized by changes to BOLD dynamics in sensory cortices.
Neuroimage. 2016 Apr 15;130:293-305. doi: 10.1016/j.neuroimage.2015.12.034. Epub 2015 Dec 24.
5
Age related-changes in the neural basis of self-generation in verbal paired associate learning.
Neuroimage Clin. 2015 Feb 20;7:537-46. doi: 10.1016/j.nicl.2015.02.006. eCollection 2015.
6
EEG/fMRI contributions to our understanding of genetic generalized epilepsies.
Epilepsy Behav. 2014 May;34:129-35. doi: 10.1016/j.yebeh.2014.02.030. Epub 2014 Mar 25.
9
A 10-year longitudinal fMRI study of narrative comprehension in children and adolescents.
Neuroimage. 2012 Nov 15;63(3):1188-95. doi: 10.1016/j.neuroimage.2012.08.049. Epub 2012 Aug 24.
10
Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy.
Epilepsy Behav. 2012 May;24(1):74-80. doi: 10.1016/j.yebeh.2012.02.022. Epub 2012 Apr 4.

本文引用的文献

1
Cluster analysis detection of functional MRI activity in temporal lobe epilepsy.
Epilepsy Res. 2007 Aug;76(1):22-33. doi: 10.1016/j.eplepsyres.2007.06.008. Epub 2007 Jul 23.
2
The hemodynamic response of the alpha rhythm: an EEG/fMRI study.
Neuroimage. 2007 Apr 15;35(3):1142-51. doi: 10.1016/j.neuroimage.2007.01.022. Epub 2007 Feb 4.
3
Development of 2dTCA for the detection of irregular, transient BOLD activity.
Hum Brain Mapp. 2008 Jan;29(1):57-69. doi: 10.1002/hbm.20362.
4
Task demand modulation of steady-state functional connectivity to primary motor cortex.
Hum Brain Mapp. 2007 Jul;28(7):663-72. doi: 10.1002/hbm.20294.
5
Consistent resting-state networks across healthy subjects.
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53. doi: 10.1073/pnas.0601417103. Epub 2006 Aug 31.
6
Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI.
Neuroimage. 2006 Jul 15;31(4):1536-48. doi: 10.1016/j.neuroimage.2006.02.048. Epub 2006 Apr 24.
7
Correlation of PET and qEEG in normal subjects.
Psychiatry Res. 2006 Apr 30;146(3):271-82. doi: 10.1016/j.pscychresns.2005.06.008. Epub 2006 Apr 5.
8
Where the BOLD signal goes when alpha EEG leaves.
Neuroimage. 2006 Jul 15;31(4):1408-18. doi: 10.1016/j.neuroimage.2006.02.002. Epub 2006 Mar 13.
9
Improved temporal clustering analysis method for detecting multiple response peaks in fMRI.
J Magn Reson Imaging. 2006 Mar;23(3):285-90. doi: 10.1002/jmri.20523.
10
Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses.
Nat Neurosci. 2006 Jan;9(1):23-5. doi: 10.1038/nn1616. Epub 2005 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验