Chiu Joanna C, Vanselow Jens T, Kramer Achim, Edery Isaac
Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA.
Genes Dev. 2008 Jul 1;22(13):1758-72. doi: 10.1101/gad.1682708.
A common feature of animal circadian clocks is the progressive phosphorylation of PERIOD (PER) proteins, which is highly dependent on casein kinase Idelta/epsilon (CKIdelta/epsilon; termed DOUBLETIME [DBT] in Drosophila) and ultimately leads to the rapid degradation of hyperphosphorylated isoforms via a mechanism involving the F-box protein, beta-TrCP (SLIMB in Drosophila). Here we use the Drosophila melanogaster model system, and show that a key step in controlling the speed of the clock is phosphorylation of an N-terminal Ser (S47) by DBT, which collaborates with other nearby phosphorylated residues to generate a high-affinity atypical SLIMB-binding site on PER. DBT-dependent increases in the phospho-occupancy of S47 are temporally gated, dependent on the centrally located DBT docking site on PER and partially counterbalanced by protein phosphatase activity. We propose that the gradual DBT-mediated phosphorylation of a nonconsensus SLIMB-binding site establishes a temporal threshold for when in a daily cycle the majority of PER proteins are tagged for rapid degradation. Surprisingly, most of the hyperphosphorylation is unrelated to direct effects on PER stability. We also use mass spectrometry to map phosphorylation sites on PER, leading to the identification of a number of "phospho-clusters" that explain several of the classic per mutants.
动物生物钟的一个共同特征是周期蛋白(PER)的逐步磷酸化,这高度依赖酪蛋白激酶Idelta/epsilon(CKIdelta/epsilon;在果蝇中称为双时基因[DBT]),并最终通过一种涉及F-box蛋白beta-TrCP(果蝇中的SLIMB)的机制导致过度磷酸化异构体的快速降解。在这里,我们使用黑腹果蝇模型系统,表明控制生物钟速度的关键步骤是DBT对N端丝氨酸(S47)的磷酸化,它与附近的其他磷酸化残基协同作用,在PER上产生一个高亲和力的非典型SLIMB结合位点。S47磷酸化占有率的DBT依赖性增加在时间上受到调控,依赖于PER上位于中央的DBT对接位点,并部分地被蛋白磷酸酶活性所抵消。我们提出,DBT介导的对非一致性SLIMB结合位点的逐步磷酸化,为大多数PER蛋白在每日周期中何时被标记以便快速降解建立了一个时间阈值。令人惊讶的是,大多数过度磷酸化与对PER稳定性的直接影响无关。我们还使用质谱法绘制PER上的磷酸化位点,从而鉴定出一些“磷酸簇”,它们解释了几个经典的per突变体。