Suppr超能文献

神经调节与呼吸节律的协调

Neuromodulation and the orchestration of the respiratory rhythm.

作者信息

Doi Atsushi, Ramirez Jan-Marino

机构信息

Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA.

出版信息

Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):96-104. doi: 10.1016/j.resp.2008.06.007.

Abstract

The respiratory system is continuously modulated by numerous aminergic and peptidergic substances that act at all levels of integration: from the sensory level to the level of central networks and motor nuclei. The same neuronal networks receive inputs from multiple modulators released locally as well as from distal nuclei. All parameters of respiratory control are controlled by multiple neuromodulators. By partly converging onto similar G-proteins and second messenger systems, acetylcholine, norepinephrine, histamine, serotonin (5-HT), dopamine, ATP, substance P, cholecystokinin (CCK) can increase frequency, regularity and amplitude of respiratory activity. Yet, the same modulator can also exert differential effects on respiratory activity by acting on different receptors partly in the same neurons. In the pre-Bötzinger complex (pre-BötC) modulators can differentially modulate frequency and amplitude in different types of pacemaker neurons. Similarly motoneurons located in different motor nuclei receive differential amplitude modulation from different modulators. Thus, modulators are capable of orchestrating and modulating different parameters of respiratory activity by differentially targeting different cellular targets. A disturbance in modulatory control may lead to Sudden Infant Death Syndrome (SIDS) and erratic breathing.

摘要

呼吸系统受到多种胺能和肽能物质的持续调节,这些物质在整合的各个层面发挥作用:从感觉层面到中枢网络和运动核团层面。相同的神经网络接收来自局部释放的多种调节剂以及远端核团的输入。呼吸控制的所有参数均由多种神经调节剂控制。通过部分汇聚到相似的G蛋白和第二信使系统,乙酰胆碱、去甲肾上腺素、组胺、5-羟色胺(5-HT)、多巴胺、三磷酸腺苷(ATP)、P物质、胆囊收缩素(CCK)可增加呼吸活动的频率、规律性和幅度。然而,同一调节剂通过部分作用于同一神经元中的不同受体,也可对呼吸活动产生不同影响。在前包钦格复合体(pre-BötC)中,调节剂可对不同类型的起搏神经元的频率和幅度进行不同调节。同样,位于不同运动核团的运动神经元也会受到不同调节剂的不同幅度调节。因此,调节剂能够通过不同地靶向不同细胞靶点来协调和调节呼吸活动的不同参数。调节控制的紊乱可能导致婴儿猝死综合征(SIDS)和呼吸不规律。

相似文献

1
Neuromodulation and the orchestration of the respiratory rhythm.
Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):96-104. doi: 10.1016/j.resp.2008.06.007.
3
State-dependent interactions between excitatory neuromodulators in the neuronal control of breathing.
J Neurosci. 2010 Jun 16;30(24):8251-62. doi: 10.1523/JNEUROSCI.5361-09.2010.
4
Endogenous activation of serotonin-2A receptors is required for respiratory rhythm generation in vitro.
J Neurosci. 2002 Dec 15;22(24):11055-64. doi: 10.1523/JNEUROSCI.22-24-11055.2002.
5
[Significance of neurotransmitters and neuromodulators in regulating respiration. A. Central aminergic neurons].
Fortschr Neurol Psychiatr. 1988 Mar;56(3):69-96. doi: 10.1055/s-2007-1001219.
6
7
Bioaminergic neuromodulation of respiratory rhythm in vitro.
Respir Physiol Neurobiol. 2009 Aug 31;168(1-2):69-75. doi: 10.1016/j.resp.2009.03.011.
8
Raphe pallidus modulates Bötzinger complex-induced inhibition of the phrenic nerve activity in rats.
Eur J Neurosci. 2011 Oct;34(7):1113-20. doi: 10.1111/j.1460-9568.2011.07837.x. Epub 2011 Sep 6.

引用本文的文献

1
Asymmetric neuromodulation in the respiratory network contributes to rhythm and pattern generation.
Front Neural Circuits. 2025 Jul 8;19:1532401. doi: 10.3389/fncir.2025.1532401. eCollection 2025.
2
Convergent effects of peptides on the initiation of feeding motor programs in the mollusk .
J Neurophysiol. 2025 May 1;133(5):1368-1379. doi: 10.1152/jn.00042.2025. Epub 2025 Apr 4.
3
Assessing agreement among non-invasive indicators for inspiratory effort during pressure support ventilation.
Front Med (Lausanne). 2025 Mar 5;12:1561017. doi: 10.3389/fmed.2025.1561017. eCollection 2025.
4
Asymmetric neuromodulation in the respiratory network contributes to rhythm and pattern generation.
bioRxiv. 2024 Nov 11:2024.11.11.623076. doi: 10.1101/2024.11.11.623076.
5
The lateral habenula regulates stress-related respiratory responses via the monoaminergic system.
Pflugers Arch. 2025 Mar;477(3):441-452. doi: 10.1007/s00424-024-03043-7. Epub 2024 Nov 19.
6
Multistability of bursting rhythms in a half-center oscillator and the protective effects of synaptic inhibition.
Front Cell Neurosci. 2024 Sep 17;18:1395026. doi: 10.3389/fncel.2024.1395026. eCollection 2024.
8
Convergent Comodulation Reduces Interindividual Variability of Circuit Output.
eNeuro. 2024 Sep 10;11(9). doi: 10.1523/ENEURO.0167-24.2024. Print 2024 Sep.
10
Switching neuron contributions to second network activity.
J Neurophysiol. 2024 Feb 1;131(2):417-434. doi: 10.1152/jn.00373.2023. Epub 2024 Jan 10.

本文引用的文献

1
Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons.
J Neurosci. 2008 Mar 5;28(10):2495-505. doi: 10.1523/JNEUROSCI.4729-07.2008.
2
Differential modulation of neural network and pacemaker activity underlying eupnea and sigh-breathing activities.
J Neurophysiol. 2008 May;99(5):2114-25. doi: 10.1152/jn.01192.2007. Epub 2008 Feb 20.
5
5-HT receptor regulation of neurotransmitter release.
Pharmacol Rev. 2007 Dec;59(4):360-417. doi: 10.1124/pr.107.07103.
6
Necdin gene, respiratory disturbances and Prader-Willi syndrome.
Adv Exp Med Biol. 2008;605:159-64. doi: 10.1007/978-0-387-73693-8_28.
7
Functional neuroanatomy of the human pre-Bötzinger complex with particular reference to sudden unexplained perinatal and infant death.
Neuropathology. 2008 Feb;28(1):10-6. doi: 10.1111/j.1440-1789.2007.00824.x. Epub 2007 Nov 20.
8
Identifying infants at risk for sudden infant death syndrome.
Curr Opin Pediatr. 2007 Apr;19(2):145-9. doi: 10.1097/MOP.0b013e32808373b6.
9
Treatment with desipramine improves breathing and survival in a mouse model for Rett syndrome.
Eur J Neurosci. 2007 Apr;25(7):1915-22. doi: 10.1111/j.1460-9568.2007.05466.x.
10
Sudden Infant Death Syndrome: review of implicated genetic factors.
Am J Med Genet A. 2007 Apr 15;143A(8):771-88. doi: 10.1002/ajmg.a.31722.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验