Suppr超能文献

基于α-散度的非负矩阵分解用于聚类癌症基因表达数据

On alpha-divergence based nonnegative matrix factorization for clustering cancer gene expression data.

作者信息

Liu Weixiang, Yuan Kehong, Ye Datian

机构信息

Research Center of Biomedical Engineering, Life Science Division, Graduate school at Shenzhen, Tsinghua University, Shenzhen 518055, China.

出版信息

Artif Intell Med. 2008 Sep;44(1):1-5. doi: 10.1016/j.artmed.2008.05.001. Epub 2008 Jul 3.

Abstract

OBJECTIVE

Nonnegative matrix factorization (NMF) has been proven to be a powerful clustering method. Recently Cichocki and coauthors have proposed a family of new algorithms based on the alpha-divergence for NMF. However, it is an open problem to choose an optimal alpha.

METHODS AND MATERIALS

In this paper, we tested such NMF variant with different alpha values on clustering cancer gene expression data for optimal alpha selection experimentally with 11 datasets.

RESULTS AND CONCLUSION

Our experimental results show that alpha=1 and 2 are two special optimal cases for real applications.

摘要

目的

非负矩阵分解(NMF)已被证明是一种强大的聚类方法。最近,齐乔茨基及其合著者提出了一系列基于α-散度的NMF新算法。然而,选择最优的α仍然是一个悬而未决的问题。

方法和材料

在本文中,我们在11个数据集上通过实验测试了这种具有不同α值的NMF变体,用于在聚类癌症基因表达数据时选择最优α。

结果与结论

我们的实验结果表明,α = 1和2是实际应用中的两个特殊最优情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验