Nakai Naoya, Kawano Fuminori, Terada Masahiro, Oke Yoshihiko, Ohira Takashi, Ohira Yoshinobu
Department of Health and Sports Sciences, Graduate School of Medicine Bioscience, Osaka University, Osaka 560-0043, Japan.
Biochim Biophys Acta. 2008 Oct;1780(10):1101-5. doi: 10.1016/j.bbagen.2008.06.002. Epub 2008 Jun 18.
Effect of peroxisome proliferator-activated receptor alpha (PPARalpha) agonists, WY-14,643 (WY) and/or clofibrate, on the leucine-induced phosphorylation of translational targets in C2C12 myoblasts was studied. C2C12 cells were treated with WY or clofibrate for 24 h prior to stimulation with leucine. Western blot analyses revealed that the leucine-induced phosphorylation of p70 S6 kinase (p70S6K), a key regulator of translation initiation, was significantly higher in WY-treated cells than in control and clofibrate-treated cells. Phosphorylation of extracellular-regulated kinase (ERK1/2) was higher in WY-treated cells. WY treatment also increased the leucine-induced phosphorylation of ribosomal protein S6 and eukaryotic initiation factor 4B. In contrast, eukaryotic elongation factor 2, a marker for peptide chain elongation process, was significantly activated (dephosphorylated) only in leucine-stimulated control cells. Pre-treatment of the cells with PD98059 (ERK1/2 kinase inhibitor) prevented the phosphorylation of ERK1/2 and decreased the leucine-induced phosphorylation of p70S6K. It is concluded that WY increased the leucine-induced phosphorylation of target proteins involving in translation initiation via ERK/p70S6K pathway, but impaired the signaling for elongation process, suggesting that p70S6K phosphorylation may be essential, but not sufficient for the activation of entire targets for protein translation in WY-treated cells.