Zimmermann Melanie, Törnroos Karl W, Sitzmann Helmut, Anwander Reiner
Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
Chemistry. 2008;14(24):7266-77. doi: 10.1002/chem.200800492.
The protonolysis reaction of [Ln(AlMe(4))(3)] with various substituted cyclopentadienyl derivatives HCp(R) gives access to a series of half-sandwich complexes [Ln(AlMe(4))(2)(Cp(R))]. Whereas bis(tetramethylaluminate) complexes with [1,3-(Me(3)Si)(2)C(5)H(3)] and [C(5)Me(4)SiMe(3)] ancillary ligands form easily at ambient temperature for the entire Ln(III) cation size range (Ln=Lu, Y, Sm, Nd, La), exchange with the less reactive [1,2,4-(Me(3)C)(3)C(5)H(3)] was only obtained at elevated temperatures and for the larger metal centers Sm, Nd, and La. X-ray structure analyses of seven representative complexes of the type [Ln(AlMe(4))(2)(Cp(R))] reveal a similar distinct [AlMe(4)] coordination (one eta(2), one bent eta(2)). Treatment with Me(2)AlCl leads to [AlMe(4)] --> [Cl] exchange and, depending on the Al/Ln ratio and the Cp(R) ligand, varying amounts of partially and fully exchanged products [{Ln(AlMe(4))(mu-Cl)(Cp(R))}(2)] and [{Ln(mu-Cl)(2)(Cp(R))}(n)], respectively, have been identified. Complexes [{Y(AlMe(4))(mu-Cl)(C(5)Me(4)SiMe(3))}(2)] and [{Nd(AlMe(4))(mu-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)] have been characterized by X-ray structure analysis. All of the chlorinated half-sandwich complexes are inactive in isoprene polymerization. However, activation of the complexes [Ln(AlMe(4))(2)(Cp(R))] with boron-containing cocatalysts, such as [Ph(3)C][B(C(6)F(5))(4)], [PhNMe(2)H][B(C(6)F(5))(4)], or B(C(6)F(5))(3), produces initiators for the fabrication of trans-1,4-polyisoprene. The choice of rare-earth metal cation size, Cp(R) ancillary ligand, and type of boron cocatalyst crucially affects the polymerization performance, including activity, catalyst efficiency, living character, and polymer stereoregularity. The highest stereoselectivities were observed for the precatalyst/cocatalyst systems [La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3) (trans-1,4 content: 95.6 %, M(w)/M(n)=1.26) and [La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3) (trans-1,4 content: 99.5 %, M(w)/M(n)=1.18).
[Ln(AlMe(4))(3)]与各种取代的环戊二烯基衍生物HCp(R)的质子解反应可得到一系列半夹心配合物[Ln(AlMe(4))(2)(Cp(R))]。而含[1,3-(Me(3)Si)(2)C(5)H(3)]和[C(5)Me(4)SiMe(3)]辅助配体的双(四甲基铝酸酯)配合物在室温下对于整个Ln(III)阳离子尺寸范围(Ln = Lu、Y、Sm、Nd、La)都能轻松形成,与反应活性较低的[1,2,4-(Me(3)C)(3)C(5)H(3)]的交换仅在高温下且对于较大的金属中心Sm、Nd和La才能实现。七种代表性的[Ln(AlMe(4))(2)(Cp(R))]型配合物的X射线结构分析揭示了类似的独特[AlMe(4)]配位(一个η²,一个弯曲的η²)。用Me(2)AlCl处理会导致[AlMe(4)]→[Cl]交换,并且根据Al/Ln比例和Cp(R)配体的不同,分别鉴定出了不同量的部分和完全交换产物[{Ln(AlMe(4))(μ-Cl)(Cp(R))}(2)]和[{Ln(μ-Cl)(2)(Cp(R))}(n)]。配合物[{Y(AlMe(4))(μ-Cl)(C(5)Me(4)SiMe(3))}(2)]和[{Nd(AlMe(4))(μ-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)]已通过X射线结构分析进行了表征。所有氯化半夹心配合物在异戊二烯聚合中均无活性。然而,用含硼助催化剂,如[Ph(3)C][B(C(6)F(5))(4)]、[PhNMe(2)H][B(C(6)F(5))(4)]或B(C(6)F(5))(3)对配合物[Ln(AlMe(4))(2)(Cp(R))]进行活化,可产生用于制备反式-1,4-聚异戊二烯的引发剂。稀土金属阳离子尺寸、Cp(R)辅助配体和硼助催化剂类型的选择对聚合性能,包括活性、催化剂效率、活性特征和聚合物立构规整性有至关重要的影响。对于预催化剂/助催化剂体系[La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3)(反式-1,4含量:95.6%,M(w)/M(n)=1.26)和[La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3)(反式-1,4含量:99.5%,M(w)/M(n)=1.18)观察到了最高的立体选择性。