Gill Christopher S, Venkatasubbaiah Krishnan, Phan Nam T S, Weck Marcus, Jones Christopher W
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA.
Chemistry. 2008;14(24):7306-13. doi: 10.1002/chem.200800532.
The Co(III)--salen-catalyzed (salen=N,N'-bis(salicylidene)ethylenediamine dianion) hydrolytic kinetic resolution (HKR) of racemic epoxides has emerged as a highly attractive and efficient method of synthesizing chiral C(3) building blocks for intermediates in larger, more complex molecules. HKR reaction rates have displayed a second order dependency on the concentration of active sites, and thus researchers have proposed a bimetallic transition state for the HKR mechanism. Here we report the utilization of pendant Co(III)--salen catalysts on silica supported polymer brushes as a catalyst for the HKR of epichlorohydrin. The novel polymer brush architecture provided a unique framework for promoting site-site interactions as required in the proposed bimetallic transition state of the HKR mechanism. Furthermore, the polymer brushes mimic the environment of soluble polymer-based catalysts, whereas the silica support permitted facile recovery and reuse of the catalyst. The polymer brush catalyst displayed increased activities over the soluble Jacobsen Co--salen catalyst and was observed to retain its high enantioselectivities (>99 %) after each of five reactions despite decreasing activities. Analysis indicated decomposition of the salen ligand as an underlying cause of catalyst deactivation.
钴(III)-水杨醛缩乙二胺(salen = N,N'-双(水杨基亚甲基)乙二胺二价阴离子)催化的外消旋环氧化物的水解动力学拆分(HKR)已成为一种极具吸引力且高效的方法,用于合成更大、更复杂分子中间体的手性C(3)结构单元。HKR反应速率对活性位点浓度呈现二级依赖性,因此研究人员提出了HKR机理的双金属过渡态。在此,我们报道了在二氧化硅负载的聚合物刷上使用侧基钴(III)-水杨醛缩乙二胺催化剂催化环氧氯丙烷的HKR。这种新型聚合物刷结构为促进HKR机理所提出的双金属过渡态中所需的位点-位点相互作用提供了独特的框架。此外,聚合物刷模拟了基于可溶性聚合物的催化剂的环境,而二氧化硅载体使催化剂易于回收和再利用。聚合物刷催化剂比可溶性雅各布森钴-水杨醛缩乙二胺催化剂表现出更高的活性,并且尽管活性降低,但在五次反应中的每一次反应后仍观察到其保持高对映选择性(> 99%)。分析表明,salen配体的分解是催化剂失活的根本原因。