Suppr超能文献

Tat系统校对FeS蛋白底物,并直接启动对被拒绝分子的处理。

The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules.

作者信息

Matos Cristina F R O, Robinson Colin, Di Cola Alessandra

机构信息

Department of Biological Sciences, University of Warwick, Coventry, UK.

出版信息

EMBO J. 2008 Aug 6;27(15):2055-63. doi: 10.1038/emboj.2008.132. Epub 2008 Jul 10.

Abstract

The twin-arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane, including FeS proteins that receive their cofactors in the cytoplasm. We have studied two Escherichia coli Tat substrates, NrfC and NapG, to examine how, or whether, the system exports only correctly folded and assembled FeS proteins. With NrfC, substitutions in even one of four predicted FeS centres completely block export, indicating an effective proofreading activity. The FeS mutants are rapidly degraded but only if they interact with the Tat translocon; they are stable in a tat deletion strain and equally stable in wild-type cells if the signal peptide twin-arginine motif is removed to block targeting. Basically similar results are obtained with NapG. The Tat apparatus thus proofreads these substrates and directly initiates the turnover of rejected molecules. Turnover of mutated FeS substrates is completely dependent on the TatA/E subunits that are believed to be involved in the late stages of translocation, and we propose that partial translocation triggers substrate turnover within an integrated quality control system for FeS proteins.

摘要

双精氨酸转运(Tat)系统可将折叠好的蛋白质转运穿过细菌质膜,其中包括在细胞质中获取其辅因子的铁硫(FeS)蛋白。我们研究了两种大肠杆菌Tat底物,即NrfC和NapG,以考察该系统是如何或是否仅输出正确折叠和组装的FeS蛋白。对于NrfC,即使四个预测的FeS中心中的一个发生替换,也会完全阻断其输出,这表明存在有效的校对活性。FeS突变体迅速降解,但前提是它们与Tat转运体相互作用;如果信号肽双精氨酸基序被去除以阻止靶向,它们在tat缺失菌株中是稳定的,在野生型细胞中同样稳定。用NapG也得到了基本相似的结果。因此,Tat装置对这些底物进行校对,并直接启动被拒分子的周转。突变的FeS底物的周转完全依赖于据信参与转运后期的TatA/E亚基,我们提出部分转运在FeS蛋白的综合质量控制系统内触发底物周转。

相似文献

1
The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules.
EMBO J. 2008 Aug 6;27(15):2055-63. doi: 10.1038/emboj.2008.132. Epub 2008 Jul 10.
3
Malfolded recombinant Tat substrates are Tat-independently degraded in Escherichia coli.
FEBS Lett. 2010 Aug 20;584(16):3644-8. doi: 10.1016/j.febslet.2010.07.039. Epub 2010 Jul 24.
4
Probing the quality control mechanism of the twin-arginine translocase with folding variants of a -designed heme protein.
J Biol Chem. 2018 May 4;293(18):6672-6681. doi: 10.1074/jbc.RA117.000880. Epub 2018 Mar 20.
7
A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1958-E1967. doi: 10.1073/pnas.1615056114. Epub 2017 Feb 21.
8
Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
mBio. 2017 Aug 1;8(4):e00909-17. doi: 10.1128/mBio.00909-17.
9
10
Structural diversity in twin-arginine signal peptide-binding proteins.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15641-6. doi: 10.1073/pnas.0703967104. Epub 2007 Sep 27.

引用本文的文献

1
Acyl carrier protein tag can enhance tobacco etch virus protease stability and promote its covalent immobilisation.
Appl Microbiol Biotechnol. 2023 Mar;107(5-6):1697-1705. doi: 10.1007/s00253-023-12377-8. Epub 2023 Feb 10.
2
The biogenesis of β-lactamase enzymes.
Microbiology (Reading). 2022 Aug;168(8). doi: 10.1099/mic.0.001217.
3
Transport of Folded Proteins by the Tat System.
Protein J. 2019 Aug;38(4):377-388. doi: 10.1007/s10930-019-09859-y.
4
The Twin-Arginine Pathway for Protein Secretion.
EcoSal Plus. 2019 Jun;8(2). doi: 10.1128/ecosalplus.ESP-0040-2018.
5
Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium.
Biotechnol Biofuels. 2019 Apr 1;12:74. doi: 10.1186/s13068-019-1416-9. eCollection 2019.
6
Archaeal cell surface biogenesis.
FEMS Microbiol Rev. 2018 Sep 1;42(5):694-717. doi: 10.1093/femsre/fuy027.
7
Probing the quality control mechanism of the twin-arginine translocase with folding variants of a -designed heme protein.
J Biol Chem. 2018 May 4;293(18):6672-6681. doi: 10.1074/jbc.RA117.000880. Epub 2018 Mar 20.
8
Escherichia coli "TatExpress" strains super-secrete human growth hormone into the bacterial periplasm by the Tat pathway.
Biotechnol Bioeng. 2017 Dec;114(12):2828-2836. doi: 10.1002/bit.26434. Epub 2017 Oct 6.
9
Biosynthesis and Insertion of the Molybdenum Cofactor.
EcoSal Plus. 2015;6(2). doi: 10.1128/ecosalplus.ESP-0006-2013.

本文引用的文献

1
The twin-arginine transport system: moving folded proteins across membranes.
Biochem Soc Trans. 2007 Nov;35(Pt 5):835-47. doi: 10.1042/BST0350835.
2
Functional Tat transport of unstructured, small, hydrophilic proteins.
J Biol Chem. 2007 Nov 16;282(46):33257-33264. doi: 10.1074/jbc.M703303200. Epub 2007 Sep 11.
3
Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides.
J Biol Chem. 2007 Mar 16;282(11):8309-16. doi: 10.1074/jbc.M610507200. Epub 2007 Jan 11.
5
The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter.
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10482-6. doi: 10.1073/pnas.0503558102. Epub 2005 Jul 18.
6
Twin-arginine-specific protein export in Escherichia coli.
Res Microbiol. 2005 Mar;156(2):131-6. doi: 10.1016/j.resmic.2004.09.016. Epub 2005 Jan 28.
8
Tat-dependent protein targeting in prokaryotes and chloroplasts.
Biochim Biophys Acta. 2004 Nov 11;1694(1-3):135-47. doi: 10.1016/j.bbamcr.2004.03.010.
9
Topological studies on the twin-arginine translocase component TatC.
FEMS Microbiol Lett. 2004 May 15;234(2):303-8. doi: 10.1016/j.femsle.2004.03.048.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验