Hirokawa Nobutaka, Noda Yasuko
Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
Physiol Rev. 2008 Jul;88(3):1089-118. doi: 10.1152/physrev.00023.2007.
Various molecular cell biology and molecular genetic approaches have indicated significant roles for kinesin superfamily proteins (KIFs) in intracellular transport and have shown that they are critical for cellular morphogenesis, functioning, and survival. KIFs not only transport various membrane organelles, protein complexes, and mRNAs for the maintenance of basic cellular activity, but also play significant roles for various mechanisms fundamental for life, such as brain wiring, higher brain functions such as memory and learning and activity-dependent neuronal survival during brain development, and for the determination of important developmental processes such as left-right asymmetry formation and suppression of tumorigenesis. Accumulating data have revealed a molecular mechanism of cargo recognition involving scaffolding or adaptor protein complexes. Intramolecular folding and phosphorylation also regulate the binding activity of motor proteins. New techniques using molecular biophysics, cryoelectron microscopy, and X-ray crystallography have detected structural changes in motor proteins, synchronized with ATP hydrolysis cycles, leading to the development of independent models of monomer and dimer motors for processive movement along microtubules.
多种分子细胞生物学和分子遗传学方法已表明驱动蛋白超家族蛋白(KIFs)在细胞内运输中发挥重要作用,并表明它们对细胞形态发生、功能及存活至关重要。KIFs不仅运输各种膜细胞器、蛋白质复合物和mRNA以维持基本细胞活动,还在生命的各种基本机制中发挥重要作用,如脑布线、记忆和学习等高级脑功能以及脑发育过程中活动依赖性神经元存活,以及在左右不对称形成和肿瘤发生抑制等重要发育过程的决定中发挥作用。越来越多的数据揭示了一种涉及支架或衔接蛋白复合物的货物识别分子机制。分子内折叠和磷酸化也调节运动蛋白的结合活性。使用分子生物物理学、冷冻电子显微镜和X射线晶体学的新技术已检测到运动蛋白的结构变化,这些变化与ATP水解循环同步,从而推动了沿微管进行连续运动的单体和二聚体运动蛋白独立模型的发展。