Hasenbusch Martin, Toldin Francesco Parisen, Pelissetto Andrea, Vicari Ettore
Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051115. doi: 10.1103/PhysRevE.77.051115. Epub 2008 May 15.
We investigate the critical behavior of the random-bond +/-J Ising model on a square lattice at the multicritical Nishimori point in the T-p phase diagram, where T is the temperature and p is the disorder parameter ( p=1 corresponds to the pure Ising model). We perform a finite-size scaling analysis of high-statistics Monte Carlo simulations along the Nishimori line defined by 2p-1=tanh(1/T) , along which the multicritical point lies. The multicritical Nishimori point is located at p;{ *}=0.890 81(7) , T;{ *}=0.9528(4) , and the renormalization-group dimensions of the operators that control the multicritical behavior are y_{1}=0.655(15) and y_{2}=0.250(2) ; they correspond to the thermal exponent nu identical with1/y_{2}=4.00(3) and to the crossover exponent phi identical withy_{1}/y_{2}=2.62(6) .
我们研究了正方晶格上随机键±J伊辛模型在T-p相图中多临界点处的临界行为,其中T为温度,p为无序参数(p = 1对应纯伊辛模型)。我们沿着由2p - 1 = tanh(1/T)定义的西森莫线对高统计量蒙特卡罗模拟进行有限尺寸标度分析,多临界点位于该线上。多临界西森莫点位于p* = 0.890 81(7),T* = 0.9528(4),控制多临界行为的算符的重整化群维数为y₁ = 0.655(15)和y₂ = 0.250(2);它们分别对应热指数ν = 1/y₂ = 4.00(3)和交叉指数φ = y₁/y₂ = 2.62(6)。